
OpenMAMA Developer's Guide
for JNI

23 November 2012

Copyright 2012 The Linux Foundation. OpenMAMA is a trademark of The Linux Foundation. Linux Foundation, Linux
Standard Base, LSB, LSB Certified, IAccessible2, MeeGo are registered trademarks of the Linux Foundation. Linux is a

registered trademark of Linus Torvalds.

Information Type Example

Feed name OpenMAMA Source
Configuration file content or source code <Parameter>

 <Name>PublishFullOrderBook</Name>
 <Value>false</Value>
</Parameter>

Property names store_size

Property values in text "true"
File names wombat.xml

Command-line commands/instruction $ uname –rm

Command names setMode
Environment variables WOMBAT_PATH

User-replaceable text Required: <yourvalue>

Optional: [yourvalue]

Command-line prompt root@host#

Command line output 2.6.9-55.EL x86_64

Keyboard keys [Tab]

Document Conventions

Document Revision History

OpenMAMA Developer's Guide

Page 2

Date Version Description
13 Oct 2011 1.0 Initial release.
30 Apr 2012 1.1 Updated to include support for:

Windows operating system
29West LBM middleware
C++ and JNI/Java languages

30 Sep 2012 1.2 Updated to include support for C#.
23 Nov 2012 1.3 Updated the following:

Table 2: Middlewares and Identifiers
Section 5.2: Setting Transport Properties

OpenMAMA Developer's Guide

Page 3

Table of Contents

Introduction and Architecture 61

... 6Operating Systems 1.1

... 6Middlewares 1.2

... 7API Language Implementations 1.3

... 8Using the API 1.4

... 9Object Summary 1.5

Installation 102

... 10Linux 2.1

... 11Windows 2.2

Bridges 133

... 13Middleware Bridges 3.1

... 14Payload Bridges 3.2

Properties 164

... 16Setting Properties at Runtime 4.1

Transports 175

... 17Creating a Transport 5.1

... 17Setting Transport Properties 5.2

... 18Transport Runtime Attributes 5.3

... 18Load Balancing Transports 5.4

Events and Queues 216

... 22Accessing the Internal Event Queue 6.1

... 22Creating Queues 6.2

... 22Destroying Queues 6.3

... 26Dispatching 6.4

... 26Queue Monitoring 6.5

... 27Queue groups 6.6

... 28Developer Tips 6.7

Subscriptions 307

... 30Life Cycle of the MAMA Subscription 7.1

... 35Common Regular Subscription Behaviour 7.2

... 38Creating and Destroying Subscriptions 7.3

... 40Subscription Types 7.4

OpenMAMA Developer's Guide

Page 4

... 41Basic Subscriptions 7.5

Entitlements 428

Threading 449

OpenMAMA Dictionary 4610

... 46Creating the Data Dictionary (from platform) 10.1

... 47Using the Data Dictionary 10.2

... 47Developer Tips 10.3

Messages 4911

... 49Accessing Data 11.1

... 49Message Creation 11.2

... 50Field Iteration 11.3

... 50Special Data Types 11.4

... 52Developer Tips 11.5

... 52Java-Specific Developer Tips 11.6

... 52MamaMsg Wire Format Conversion Matrix 11.7

Data Quality 5412

... 58Data Quality for Group Subscriptions 12.1

... 58Data Quality and Fault Tolerant Takeovers 12.2

Publishing 5913

... 59Basic Publishing 13.1

... 60Advanced Publishing 13.2

Value Add 6414

... 64Timers 14.1

... 65IO 14.2

... 65User Events 14.3

... 65Logging 14.4

... 67Conflation 14.5

... 68Statistics 14.6

Example Programs 7215

Performance Programming 7316

... 73Monitoring Performance 16.1

... 73Storing Per-Symbol State 16.2

... 74Message Access 16.3

OpenMAMA Developer's Guide

Page 5

... 74Memory Allocation 16.4

... 74Threading 16.5

... 75Operating in a Managed Environment 16.6

Running Multiple Instances of OpenMAMA 7617

... 76Running with a Single Properties File 17.1

... 77Managing Multiple Properties Files 17.2

Configuration Reference 7818

... 80Avis Properties 18.1

... 82OpenMAMA Status Codes 18.2

Glossary 8419

Page 6

OpenMAMA Developer's Guide

Introduction and Architecture1

The MAMA (Middleware Agnostic Messaging) API is a subscription based messaging API with
publish/subscribe semantics, which provides a lightweight abstraction on top of a variety of underlying
messaging middlewares. The OpenMAMA API provides developers with a common interface to the
underlying messaging API, allowing migration from one messaging API to another without any code
changes to applications built using the API.

The API provides an asynchronous, event-driven programming model. You use the API to provide
callbacks where required. Data is propagated back to the registered application via these callbacks in
response to dispatching of events from event queues.

Market data semantics are added through the use of the OpenMAMDA API. The OpenMAMA API also
provides extra features when used on the NYSE Technologies Market Data Infrastructure, such as:

Subscription throttling
Entitlement enforcement
Initial values/recaps
Data quality
Refresh messages
Group subscriptions

The document details the major objects within the API and their most common usage.

Operating Systems1.1

The following operating systems are currently supported:

Linux
Windows

Middlewares1.2

The following middlewares are currently supported:

Avis
NYSE Technologies Data Fabric (as a separate plug in for Data Fabric customers only)
29West LBM (as a separate plug in for NYSE Technologies customers)

Page 7

OpenMAMA Developer's Guide

API Language Implementations1.3

The various language implementations for the OpenMAMA API expose the same top level objects with
broadly the same programming interface. The Java API also enables access to extra Java specific
functionality, such as the use of InputStream. Unless otherwise specified, allocation of OpenMAMA
objects and creation of OpenMAMA objects are two separate steps. The first step allocates the
memory and the second initializes the object. Each of the API implementations is thread safe and
thread aware. All functions/methods in the API, across all language implementations and transports,
exhibit the same behavior, unless otherwise stated.

The following language implementations are currently supported:

C
C++
C#
JNI

The C API naming convention is used to identify objects and the functions that operate on those objects.
Each object has its own header file containing definitions for all operations supported by that object. The
naming convention is as follows:

Objects: mama<Type>

Functions: mama<Type>_operation

All structures are defined as opaque types. As such they cannot be allocated directly by users of the
API. All memory management for a OpenMAMA object in C is controlled via calls to the appropriate
functions, for example:

mama<Type>_allocate()
mama<Type>_destroy()
mama<Type>_deallocate()

Sample applications written using the API are located in the examples directory provided with the

distribution. Pre-compiled versions of these example programs are located in the bin directory.

Example programs are detailed in Chapter 15: Example Programs. For clarity, the sample snippets of
code do not check the return values from function/method calls. In a production application it is
recommended that all return codes are checked for success before proceeding.

Use of the API is not restricted to the NYSE Technologies Market Data Platform. We provide the
concept of 'Basic' subscribers and publishers which allow users of the API to publish and subscribe to
topics outside of the Market Data Platform (details provided in relevant sections).

All callback functions/methods provide access to closure data in order to allow applications to associate
contextual information in their own applications with callbacks invoked from within the OpenMAMA API.

Page 8

OpenMAMA Developer's Guide

Using the API1.4

The following is a high level overview of the steps required to implement the most common use of the
OpenMAMA API: to write a market data subscribing application. Each step and their associated
features are detailed in the following chapters.

1. Load the bridge(s).

At least one bridge object must be created before OpenMAMA is opened. Bridges can only be
loaded at this time.

2. Initialize the API.

Before creating any OpenMAMA objects it is necessary to initialize the API. Open OpenMAMA by
calling the Mama.open()function. This call sets up a number of internal processes within the API

that are required for successful use of the API.

Note The call to Mama.open() is reference counted and each call must

have a corresponding call to mama.close().

3. Create event queue(s) (optional).

Users of the API can use the default internal event queue for a bridge. If multi-threading is required,
or more control over the dispatching of events, separate event queues can be created using
MamaQueue(). See Section 6: Events and Queues for details.

Note It is not necessary for an application to create its own event queues.

4. Create transport(s).

An application requires that at least one transport object has been created. The MamaTransport

object is used to define the properties for the underlying middleware's communication protocol.
There must be an entry in the mama.properties file for each transport created. See Section 5:

Transports for details.

5. Fetch data dictionary.

A data dictionary is typically required in order to obtain complete information (name, fid and data
type) regarding fields within messages. See Section 10: OpenMAMA Dictionary for details.

6. Create subscriptions.

Create a subscription object, MamaSubscription, for each symbol known to the application at

startup. See Section 7: Subscriptions for details.

7. Start dispatching.

Once all subscriptions have been created, start dispatching on the default event queue for a bridge,

Page 9

OpenMAMA Developer's Guide

and any other queues that have been created. You can continue to create further intra-day
subscriptions.

8. Shut down.

Objects must be destroyed in the following order when shutting down the application:

1. Stop dispatching on any event queues (also call mama.stop())

2. Destroy event object (Subscriptions, timers, io objects)
3. Destroy all event queues
4. Destroy all transports
5. Call mama.close()

Event objects can be created and destroyed at runtime, however, queues must not be destroyed
before all event objects that use those queues are destroyed. It is recommended that OpenMAMA
objects are destroyed in this order, as it will result in the same behavior on all middlewares currently
supported.

Note This applies only to shutdown. Event objects can be destroyed at any
point during the life of an application.

Object Summary1.5

Table 1: OpenMAMA Objects lists the major objects/types that are available for use within an
OpenMAMA based application.

Table 1: OpenMAMA Objects

MAMA Object Description

Bridge Used by OpenMAMA to communicate with a middleware.
Transport Communication protocol properties
Subscription Register interest in a symbol (topic) and receive callback updates on that symbol

(topic). Receive point-to-point requests.
Message Access to the data delivered through program listing subscription callback events.

Used to create structured data for sending when publishing via the API.
Queue Representation of the underlying event queue for dispatching events (data, timer, io

etc).
Timer Recurring timer implementation. Receive a callback at a recurring interval.
Io Register interest in events associated with file descriptors.
Publisher Publish data to a specific symbol (topic) onto the messaging backbone. Send point-to-

point requests.
Inbox Receive responses to point-to-point requests.
Dictionary Access to the definition of fields (name, fid and type) being used on the Market Data

Platform.
Source Details of how to obtain data when creating a subscription.

Page 10

OpenMAMA Developer's Guide

Installation2

Linux2.1

Installation2.1.1

OpenMAMA for Linux is distributed as a gzipped tar file. File name format:

wombat_products_<mw>_<os>_<compiler>_<glibc>_ent.tgz

where:
<mw> - indicates the middleware this version of OpenMAMA is for

<os> - indicates the operating system

<complier> - indicates the compiler

<glibc> - the glibc version

To install OpenMAMA on Linux, complete the following steps:

1. Unzip the file to a convenient directory. For illustration, we use the directory /var/userspace/

mama. The following directories are created:

Directory Description
bin Executable files.
doc OpenMAMA documentation.
examples Source code for the example programs, and an example mama.properties

file .
include Header files.
lib Library files.
RELEASE_NOTES Release notes.

2. Create a config directory:

$ mkdir /var/userspace/mama/config

3. Copy mama.properties from examples/mama to the config directory. This file should have

transport settings.

4. Set the WOMBAT_PATH variable to include config:

$ export WOMBAT_PATH=/var/userspace/mama/config

5. Set the LD_LIBRARY_PATH variable to include lib:

$ export LD_LIBRARY_PATH=/var/userspace/mama/lib:$LD_LIBRARY_PATH

6. For the Java and JNI versions of MAMA, set the CLASSPATH variable to include the .jar files in the

lib directory:

$ export CLASSPATH=/var/userspace/mama/lib/mamajni.jar:$CLASSPATH

Page 11

OpenMAMA Developer's Guide

Running Example Programs2.1.2

When you have extracted the API and set the environment variables as described above, you can run the
example programs. For the example programs to receive any data there must be a publisher somewhere
on the network.

To run the mamalistenc program, change to the bin directory and run the following command:

$./mamalistenc -S SOURCENAME -tport transportname -s SYMBOL

where:
SOURCENAME - the source name
transportname - the transport name
SYMBOL - the symbol you wish to subscribe to

The transport should be defined in both mama.properties and the publisher configuration. The source

should be defined in the publisher configuration.

The other example programs use similar options to mamalistenc. For a full list of options for a particular
program, use the -? option. For example, to see all the options for bookviewer, run the following
command:

$ mamalistenc -?

Windows2.2

Installation Steps2.2.1

OpenMAMA for Windows is distributed as a zip file. The name of the zip file has the following format:

<d>_<t>_wombat_products_<mw>_win32_<VS>_with_entitle_<branch>.zip

where:
<d> - a date stamp

<t> - a time stamp

<mw> - indicates the middleware this version of OpenMAMA is for

<VS> - the version of the Visual Studio compiler used

<branch> - the branch number

To install OpenMAMA on Windows complete the following steps:

1. Unzip the file to a convenient directory. For illustration we use the directory C:\mama. The following

directories are created:

Directory Description
bin Executable files.
doc OpenMAMA documentation.
examples Source code for the example programs.
include Header files.
lib Library files for use with .dll files.
pdb Debug files.
RELEASE_NOTES Release notes.

Page 12

OpenMAMA Developer's Guide

2. Create a config directory:

$ mkdir c:\mama\config

3. Create a mama.properties file in the config directory. This file should have transport settings.

4. Set the WOMBAT_PATH variable to include config:

$ set WOMBAT_PATH=c:\mama\config;%WOMBAT_PATH%

5. Set API_HOME to the directory where you extracted MAMA:

$ set API_HOME=c:\mama

6. Set the PATH variable to include bin\dynamic and bin\dynamic\debug:

$ set PATH=%PATH%;c:\mama\bin\dynamic;c:\mama\bin\dynamic-debug

7. For the Java and JNI versions of MAMA, set the CLASSPATH variable to include the .jar files in the

 lib directory:

$ set CLASSPATH=C:\mama\lib\mamajni.jar:%CLASSPATH%

Compiler Discrepancies: Building with Visual Studio 20102.2.2

Static Example Programs

In order to correctly build and run static example programs, the environment variable PLATFORM_LIB

must be defined to include the appropriate middleware libraries. This is a list of libraries separated by
spaces:

$ set PLATFORM_LIB_DEBUG=libmamawmwimplmtd.lib libwombatmwmtd.lib
$ set PLATFORM_LIB=libmamawmwimplmt.lib libwombatmwmt.lib

Note When using a debug build this should be PLATFORM_LIB_DEBUG.

This list must also include the OEA entitlement, Wirecache and FAST libraries, if appropriate.

Note When the static example programs are built inside the Visual Studio
2010 environment, the library names must be separated by semi-
colons.

$ set PLATFORM_LIB_DEBUG=libmamawmwimplmtd.lib;libwombatmwmtd.lib
$ set PLATFORM_LIB=libmamawmwimplmt.lib;libwombatmwmt.lib

This does not apply when building using the Makefile.example.vcc.

Page 13

OpenMAMA Developer's Guide

Bridges3

Middleware Bridges3.1

OpenMAMA supports the different middlewares through the use of bridge objects. Multiple bridges can
be loaded at any one time, one for each middleware, meaning that a single OpenMAMA application can
support more than one middleware concurrently.

Bridge objects must be created at startup, before mama_open() is called. How you create the bridge

depends on how the bridge libraries are linked into the OpenMAMA application, see Section 3.1.1:
Using Linked Bridge Libraries and Section 3.1.2: Loading Bridge Libraries at Runtime for details. Once
initialized, bridge objects are passed as parameters when creating transport, queue and queue group
objects. Any further objects (such as subscriptions or timers) that use a transport or queue
automatically use the same middleware and bridge. mama_start() and mama_stop() also take a

bridge as a parameter to start dispatching on the default event queue for that bridge.

The following table lists the identifier strings to use to represent the different middleware bridges, and
which vendor supports them.

Table 2: Middlewares and Identifiers

Middleware Identifier Supported By

Avis avis Open source

29West LBM lbm Informatica

NYSE Technologies Data Fabric wmw NYSE Technologies

Tick 42 BLP tick42blp Tick 42

RAI rai Rai Technologies

QPID qpid Open source

Exegy exegy Exegy Inc.

The bridge implementation libraries shipped with OpenMAMA contain all the middleware specific
functions. These bridge libraries can be linked into the application at link time, or dynamically loaded at
runtime (all languages), as detailed in the following sections.

Using Linked Bridge Libraries3.1.1

If the bridge implementation libraries are linked into the OpenMAMA application, either statically or
dynamically, then a bridge can be loaded using one of the following methods:

Using one of the middleware specific load functions.
Through a macro that takes the middleware identifier as a parameter.

An application will fail to compile if it tries to use a middleware bridge that has not been linked in.

Loading Bridge Libraries at Runtime3.1.2

Bridge libraries can be dynamically loaded at runtime. This is different from dynamic linking as the bridge
libraries are not actually linked into the application. The bridge to be used is decided at runtime. Using
dynamic loading offers the greatest flexibility as it means that applications do not have to be recompiled
to use different middlewares. This is the method that the example applications use.

If the application tries to load a bridge library that is not available, or if the middleware libraries for that
bridge are not available, then the load will fail. A path to the bridge libraries must be available from

Page 14

OpenMAMA Developer's Guide

LD_LIBRARY_PATH, for Unix systems, or PATH, for Windows systems.

Example 1: Loading bridge libraries at runtime

MamaBridge bridge = null;
bridge = Mama.loadBridge ("avis");

Loading Bridge Libraries at Runtime from a Specified Location3.1.3

OpenMAMA also allows the user to load the bridge libraries from a specified path. If no path is cited,
loadBridge functionality defaults to that of Section 3.2.1: Loading Bridge Libraries at Runtime. The
specified path must use the appropriate path separator for the OS i.e. "/" for Unix systems, "\" for
Windows systems.

Example 2: Loading bridge libraries at runtime with path

MamaBridge bridge = null;
bridge = Mama.loadBridge ("avis", "/home/usr/wombat/mama/lib");

Payload Bridges3.2

OpenMAMA supports different payloads through the use of bridge objects. Multiple bridges can be
loaded at any one time, one for each payload, meaning that a single OpenMAMA application can
support more than one payload concurrently.

Payload bridge objects follow the same rules for loading as middleware bridges (see Section 3.1:
Middleware Bridges). Table 3: Payloads and Identifiers lists the identifier strings to use to represent
the different middleware bridges.

Table 3: Payloads and Identifiers

Middleware Identifier Shared object name

Avis A libmamaavismsgimpl

NYSE Technologies proprietary format W libmamawmsgimpl

Loading Payload Bridges at Runtime3.2.1

Payload bridge libraries can be dynamically loaded at runtime in the same way as a middleware bridge.

Example 3: Loading payload bridge libraries at runtime

MamaPayloadBridge payload = null;
payload = Mama.loadPayloadBridge ("avis");

Default Payloads3.2.2

A middleware bridge may specify which payload to use, which is identified during the middleware bridge
loading process. When specified, OpenMAMA tries to load the requested payload bridge. If the
payload is not available the middleware bridge continues to load, and the payload load failure is logged.

The first payload bridge that is successfully loaded is marked as the default payload. This can be
overridden programmatically.

Example 4: Set default payload

mama_setDefaultPayloadBridge (‘A’);

Page 15

OpenMAMA Developer's Guide

Using Payload3.2.3

The default payload is used when no payload bridge is explicitly stated.

There are three options available for specifying payload creation:

Using the default (see Example 5: Implicit msg payload)
Using the payload ID (see Example 6: Explicit msg payload using ID)
Using the bridge structure (see Example 7: Explicit msg payload bridge)

The following examples show the payload creation options

Example 5: Implicit msg payload

mamaMsg* msg = NULL;
mamaMag_create(&msg);

Example 6: Explicit msg payload using ID

mamaMsg* msg = NULL;
mamaMag_createForPayload(&msg, ‘A’);

Example 7: Explicit msg payload bridge

mamaMsg* msg = NULL;
mamaMag_createForPayloadBridge(&msg, payload);

Page 16

OpenMAMA Developer's Guide

Properties4

There are a number of mechanisms in place by which properties for the OpenMAMA API, and the
underlying messaging middleware specific APIs, can be specified.

The default behavior for the API (for all languages) is to look for a file named mama.properties in the

directory specified by the WOMBAT_PATH environment variable. If present, the specified properties file is

loaded on application startup when Mama.open() is called. OpenMAMA accesses the properties file

and looks for all the possible properties (see Section 18: Configuration Reference for details).
Misspellings and omissions are not highlighted on startup. Please look at the documentation for the
messaging middleware being used for more detail on, and an explanation of, transport level properties.

Alternatively, users of the API can override this behavior and can specify a file name and location using
Mama.openWithProperties(). The fully qualified path to the directory is required.

Setting Properties at Runtime4.1

Properties can also be specified at runtime. This approach can be used to override existing properties
specified in mama.properties, or to add new properties to the API. All properties should be specified

prior to creating any transport objects.

Note Calling mama_open or mama_openWithProperties overrides any

properties set prior to these calls.

Properties are typically interpreted when objects such as transports or subscriptions are created,
therefore changing these at runtime has little or no effect.

The following example illustrates the setting of the router location for the Avismessaging middleware.
Properties are always specified as strings in all API versions.

Example 8: Setting properties at runtime

mama_setProperty ("mama.avis.transport.avis_tport.url",
 "elvin://127.0.0.1:5555");

Regardless of the mechanism used to specify the properties, or the specific language implementation
used, the properties must always have the same format. An example of a mama.properties file is

provided in the examples directory as part of the release structure, which highlights and describes the

most commonly specified properties for each supported middleware.

Page 17

OpenMAMA Developer's Guide

Transports5

The underpinning object in any OpenMAMA application is the MamaTransport object. The
MamaTransport object defines the network protocol-level parameters over which OpenMAMA distributes
data. Transports effectively provide scope for data identifying the underlying protocols and their values for
data delivery. This object is an isolated communication channel for data traffic. Transports specify the
communication channels to use for making subscriptions and publishing data through the API. The
transport properties that need to be set for each middleware are as follows:

29West LBM: topic resolution and immediate messaging properties.
NYSE Technologies Data Fabric: machine, port, and other Data Fabric properties.
Avis: location of the router

A single OpenMAMA application can define multiple transport objects if more than one set of physical
transport channels exist on the network.

When a transport object is created it is given a name identifier, which is used internally to obtain any
configuration parameters that have been specified on application startup. These properties can be
specified in a variety of ways, the most common being in mama.properties (see Section 4:

Properties). If the name is not found or null, then the defaults specified by OpenMAMA for that
middleware are used. The defaults can be overridden by creating transport entries in the properties file
with the name default.

Creating a Transport5.1

The following example code illustrates how to create a transport object using the identifier "avis_tport" to
locate relevant properties from the list specified to the API upon initialization.

Example 9: Creating a transport

MamaTransport transport = new MamaTransport();

//set runtime properties
transport.create ("avis_tport", bridge);

Setting Transport Properties5.2

Properties are typically set on a per transport basis within the API. Transport properties always follow
this naming convention:

mama.<middleware>.transport.<transport name>.<property name>=<value>

where:
<middleware> - for details on the supported middlewares and their identifiers, see

Section 3.1: Middleware Bridges
<transport name> - the string identifier used when creating a MamaTransport object
<property name> - the name of the property at the messaging middleware level

The property name and property value can be separated by either a space (' ') or an equals sign ('=').

Example 10: Avis example property
mama.avis.transport.avis_sub.url=elvin://localhost:7777

Page 18

OpenMAMA Developer's Guide

Transport Runtime Attributes5.3

There are several transport runtime attributes that can be set after allocation.

The API provides throttling of subscription creation and the rate at which recaps can be sent from the
API. The default values are 500 per second for initial values (subscription creation) and 250 per second
for recap requests. Subscription requests are throttled on the default throttle and recaps on the recap
throttle.

The throttles are created and can be configured on a per transport basis. The values for the throttle rates
can be changed at runtime via calls to MamaTransport.setOutboundThrottle().

Example 11: Setting throttles

/*Change the value of the default throttle to 1000 msg/sec*/
transport.setOutboundThrottle (MamaThrottleInstance.DEFAULT_THROTTLE, 1000.0);

/*Change the value of the recap throttle to 500 msg/sec*/
transport.setOutboundThrottle (MamaThrottleInstance.RECAP_THROTTLE, 500.0);

A callback can also be supplied to register for any transport level events that occur. This is dependent
on the underlying messaging middleware being used, as not all provide this type of information.

Example 12: Setting callbacks

MamaTransport.addTransportListener (transportListener);

Load Balancing Transports5.4

A transport represents an isolated communication channel for data traffic. However, it is also possible to
create a load-balanced transport, which makes available a set of channels. Different channels may be
selected to balance the amount of traffic transmitted across this set. The selection could be made at
random, or in a round-robin fashion, or in some other way according to user requirements. Load
balancing is only available on NYSE Technologies Data Fabric.

Two types of load balancing scheme are possible:

Client Load Balancing: In this case, a client selects one of the channels for use. Different clients
may then use different channels.
Subscription Load Balancing: In this case, a client may select one of the channels for each symbol
it is registering an interest in. Different symbols may then use different channels.

Properties for Load Balancing5.4.1

A number of properties may be used for load balancing:

lb<n>, lb_scheme, lb_shared_object

There are a number of different load balancing schemes available. Each scheme requires a set of
transports to be created under the same name. This set of transports is then available for making
different selections. The set of transports is defined by adding "lb" terms after the name of the transport.

These terms need to be numbered consecutively from 0, without gaps in the numbering, as illustrated in
the following example.

Page 19

OpenMAMA Developer's Guide

Example 13: Defining the transport set for load balancing

mama.wmw.transport.sub.lb0.subscribe_address_0=cache0
mama.wmw.transport.sub.lb0.subscribe_port_0=1457
mama.wmw.transport.sub.lb1.subscribe_address_0=cache1
mama.wmw.transport.sub.lb1.subscribe_port_0=1457

Once the transport set is defined, one of two load balancing schemes may be chosen: either select a
transport from the set of transports and use this transport to create all subscriptions (client load
balancing), or select a transport from the set of transports each time a subscription is created
(subscription load balancing).

Client Load Balancing

With client load balancing, a transport is selected at random and used for all subscriptions. Create a
callback, such as the following, to override this random selection and instead make the selection from a
shared object (dynamic link library) or directly in code:

void mamaTransportLbInitialCB (int numTransports, int* transportIndex);

This must pass back an index (0 <= transportIndex < numTransports). In code, this callback is set with
the following function:

mama_status
mamaTransport_setLbInitialCallback (mamaTransport transport,
 mamaTransportLbInitialCB callback);

Subscription Load Balancing

The default behavior for the subscription load balancing scheme is to begin from the first transport for the
first subscription, then select transports in round-robin for each subsequent subscription created. This
initialization and round-robin selection may be overridden by using the mamaTransportLbInitialCB
callback described above to choose the initial transport, and by creating a mamaTransportLbCB callback
to make the selection in a shared object, dynamic link library, or directly in code, as follows:

void mamaTransportLbCB (int curTransportIndex,
 int numTransports,
 const char* source,
 const char* symbol,
 int* nextTransportIndex);

This must pass back an index (0 <= transportIndex < numTransports). The source and symbol name are
passed to assist the decision process, for example, splitting the subscriptions alphabetically. In code,
this callback is set with the function:

mama_status
mamaTransport_setLbCallback (mamaTransport transport,
 mamaTransportLbCB callback);

Summary of Properties

The load balancing schemes described above are controlled by a set of four properties:

round_robin: This will round robin the transport used for each subscription.
static: This will select a transport at random to use for all subscriptions.

Page 20

OpenMAMA Developer's Guide

round_robin: This will round robin the transport used for each subscription.
api: This will allow the use of mamaTransport_setLbInitialCallback and

mamaTransport_setLbCallback to set callbacks to override default behaviour.
library: This will allow the use of a shared object (dynamic link library) with loadBalanceInitial

and loadBalance entry points to override default behaviour.

Example 14: Use the alpha shared object containing implementations of
loadBalanceInitial and loadBalance

mama.wmw.transport.sub.lb_scheme = library
mama.wmw.transport.sub.lb_shared_object = alpha.so

Example 15: Round robin the transports used to create each subscription

mama.wmw.transport.sub.lb_scheme = round_robin

Restrictions on Load Balancing

Load balancing is currently only available under the NYSE Technologies Data Fabric. In the event that
one of the transports within a load-balanced group is down, the subscriptions will not automatically fail
over to another transport within the group.

Page 21

OpenMAMA Developer's Guide

Events and Queues6

Events and queues are the core functionality of the OpenMAMA API, as they enable asynchronous,
event-driven data processing. OpenMAMA applications register interest in events, from data arriving on
a socket for a subscription or being informed of an elapsed timer, and execute application code through
callbacks in response to them.

Each event created needs a corresponding callback function created that is invoked by the API once an
event of the specific type occurs. A closure can also be specified for the event when it is being created.
A closure is an arbitrary piece of data which is returned to the user in the callback. It provides a
mechanism by which a user can associate context between the code in the callback and the application
environment. Closures are specified with the argument type java.lang.Object.

Events, when they occur within the API, are placed onto an event queue. An event queue is the
mechanism that controls the dispatching of events within the API. These events result in the invocation
of a callback for that event type once the event has been dispatched from the event queue.

Dispatching an event involves removing the next available event from the event queue, identifying the
event type, and invoking the corresponding callback registered for that event type.

Queues are represented by the MamaQueue object.

The API maintains a default internal data queue for each bridge which it uses for internal timers and
controls such as the throttling of subscriptions. You can use the default event queue for a bridge when
creating subscriptions, timers, and so forth. Dispatching on this queue starts once Mama.start() is

called. In this case the API is essentially being used in single threaded mode. The default event queue
should never be destroyed. The call to Mama.start() is reference counted and each call must have a

corresponding call to Mama.Stop(). Dispatching stops when Mama.Stop() is called for the final

time. The Mama.start()and Mama.Stop() calls are also thread safe.

When a queue is being actively dispatched, events on that queue may only be dispatched by the
dispatching thread. If dispatching is stopped then an event object can be destroyed from any thread.
This is true for both the default queue and user-created queues.

In OpenMAMA all data is propagated in response to events being dispatched from one or more event
queues. Callbacks registered with the API are invoked on the threads dispatching on particular queues
whenever an event is available. Internally, the middleware adds data onto the event queue and it is the
responsibility of the application code to dispatch events from these queues in a timely fashion.

Page 22

OpenMAMA Developer's Guide

Accessing the Internal Event Queue6.1

Example 16: Accessing the internal event queue
MamaQueue queue = null;
queue = Mama.getDefaultQueue (bridge);

Creating Queues6.2

For multi-threaded dispatching and for more control over the de-queuing of events in the API you can
create your own queues from which events can be manually dispatched, as illustrated in the following
example.

Example 17: Creating queues

MamaQueue queue = new MamaQueue ();
queue.create (bridge);

Destroying Queues6.3

An OpenMAMA queue can only be destroyed if all the objects using it have been destroyed first (such
as timers, inboxes and subscriptions).

Objects like these are destroyed asynchronously which means that there is a time delay between
calling the ‘destroy’ function and the object actually being destroyed. The object is deemed to be
destroyed whenever it is impossible for further events to be placed onto the queue on its behalf.

Each time one of these objects is created, a lock count is incremented on the associated queue, which
is only decremented when that object is fully destroyed.

How to Destroy a Queue6.3.1

An OpenMAMA queue can be destroyed using the mamaQueue_destroy() function shown in the

following example. If there are any open objects on the queue then an error code is returned.

Example 18: mamaQueue_destroy()

/* Attempt to destroy the queue. */
mama_status status = mamaQueue_destroy(queue);
if(status == MAMA_STATUS_QUEUE_OPEN_OBJECTS)
{
 printf("Can't destroy queue as there are open objects.\n");
}

If the objects using the queue have had their ‘destroy’ functions called but have not been fully destroyed,
then the mamaQueue_destroyWait() function can be used. This blocks and processes messages

from the queue until all objects have been fully destroyed:

Example 19: mamaQueue_destroyWait()

/* Block until all objects have been destroyed. */
mamaQueue_destroyWait(queue);

The mamaQueue_destroyTimedWait() function behaves in the same manner as

mamaQueue_destroyWait() but only blocks for the supplied timer period. Once this period elapses a

timeout error is returned if all open objects have not been destroyed.

Page 23

OpenMAMA Developer's Guide

Example 20: mamaQueue_destroyTimedWait()

/* Process messages for 6 seconds. */
mama_status status == mamaQueue_destroyTimedWait(queue, 6000);
if(status == MAMA_STATUS_TIMEOUT)
{

 printf("Timed out waiting for queue to be destroyed.\n");
}

Additionally, the mamaQueue_canDestroy() function indicates if all objects using the queue have

been destroyed:

Example 21: mamaQueue_canDestroy()

/* Check if queue can be destroyed. */
mama_status status == mamaQueue_canDestroy(queue);
if(status == MAMA_STATUS_QUEUE_OPEN_OBJECTS)
{
 printf("Queue cannot be destroyed as it is still in use.\n");
}
else if(status == MAMA_STATUS_OK)
{
 printf(“Queue can be safely destroyed.\n”);
}

Destroying the Default Queue6.3.2

Objects can be created on the default queue that are only destroyed when the mama_close function is

called. The mamaQueue_destroyTimedWait() function is called internally by OpenMAMA and

blocks for two seconds, after which the timeout error is returned.

The two second time period can be increased by use of the following entry in the mama.properties

file, expressed in milliseconds:

Increase the native queue wait to 5 seconds
mama.defaultqueue.timeout = 5000

Object Destroy Notifications6.3.3

Ideally, applications will not attempt to destroy the queue until all the objects using it have been
destroyed first. OpenMAMA can provide notification that an object has been fully destroyed by invoking
a call-back function. The method of registration depends on the language being used.

The following example code snippet shows how to register for the callback. The example application
mamaInbox2 provides a full working demonstration.

Example 22: Creating an inbox

public class InboxCallbackEx implements MamaInboxCallbackEx
{
 public void onDestroy(MamaInbox inbox)
 {

System.out.println(“Inbox has been destroyed.”);
 }

 public void onMsg(MamaInbox inbox, MamaMsg msg)
 {
System.out.println(“Inbox has received a message.”);

Page 24

OpenMAMA Developer's Guide

 }
}

// Create the inbox
MamaInbox inbox = new MamaInbox();
InboxCallbackEx callbackEx = new InboxCallbackEx();
inbox.create(transport, queue, callbackEx);

Debugging Queue Destroy6.3.4

If a programmer creates an object but forgets to destroy it, then the mamaQueue_destroyWait

function will block forever. Tracking down the offending object can be difficult for a large application and
so OpenMAMA provides assistance via the object lock tracking property, which can be enabled in the
mama.properties file.

Example 23: Enabling queue tracking

Turn on queue tracking
mama.queue.object_lock_tracking = 1

With this property turned on, OpenMAMA writes a log message every time the queue lock count is
increased or decreased. The following output is an example of this message written at ‘NORMAL’ level.

Page 25

OpenMAMA Developer's Guide

Example 24: Queue lock count log messages

2011-04-26 13:04:15:296: mamaQueue_incrementObjectCount(): queue 0x0092E600, owner
0x0092D480, new count 1.
2011-04-26 13:04:15:296: mamaQueue_incrementObjectCount(): queue 0x0092E600, owner
0x00E65A20, new count 2.
2011-04-26 13:04:15:296: mamaQueue_incrementObjectCount(): queue 0x0092E600, owner
0x00E65D30, new count 3.
2011-04-26 13:04:15:296: mamaQueue_incrementObjectCount(): queue 0x0092E600, owner
0x00E6F488, new count 4.
2011-04-26 13:04:15:296: mamaQueue_incrementObjectCount(): queue 0x0092E600, owner
0x00E65F00, new count 5.

Additionally, a block of memory is allocated at this point, which is freed whenever the lock count is
decremented. This allows a memory leak detection tool to display the stack trace and pinpoint the
location where the object was created. The following output is from valgrind running on linux and shows
that a subscription was created in the subscribeToSymbols function that was not destroyed.

Example 25: valgrind output

==15766== 8 bytes in 1 blocks are possibly lost in loss record 26 of 245
==15766== at 0x4906795: calloc (vg_replace_malloc.c:418)
==15766== by 0x4A72BED: mamaQueue_incrementObjectCount (queue.c:551)
==15766== by 0x4A7A99A: mamaSubscription_setupBasic (subscription.c:649)
==15766== by 0x4A7E562: mamaSubscription_setup (subscription.c:3238)
==15766== by 0x4A7A119: mamaSubscription_create_ (subscription.c:349)
==15766== by 0x4A7AC09: mamaSubscription_create (subscription.c:732)
==15766== by 0x403BB8: subscribeToSymbols (in /var/userspace/gclarke/work/mama-50-
dev/install/examples/mama/mamalistenc)
==15766== by 0x40379A: main (in /var/userspace/gclarke/work/mama-50-dev/install/
examples/mama/mamalistenc)

Note The object lock tracking is turned off by default as it may cause
degradation in application performance.

Page 26

OpenMAMA Developer's Guide

Dispatching6.4

OpenMAMA provides the following mechanisms by which events can be dispatched from a queue:

1. Blocking Dispatching

In this case a call to MamaQueue.dispatch() simply blocks, constantly dispatching events from

the queue until MamaQueue.stopDispatch() is called. stopDispatch() can be called from

within a callback function/method from that queue or from another thread (which may be dispatching
events from a different queue).

2. Timed Dispatching

OpenMAMA provides a MamaQueue.timedDispatch()function, the behaviour of which is

dependent on the underlying middleware being used. When using TIBCO Rendezvous the function
behaves as tibrvQueue_timedDispatch() whereby the function blocks until an event has been

dispatched or the specified timeout interval has elapsed. When using 29West LBM or the NYSE
Technologies Data Fabric, the function only unblocks after the interval has elapsed regardless of
events being dispatched or not.

3. Dispatch a single event

The MamaQueue.dispatchEvent() function dispatches a single event from the queue and

returns. If there are no events on the queue the function returns immediately.

Note Timed dispatching or single event dispatching are only available on
queues created externally to the API. They are not available on the
internal default event queue.

For full control over dispatching and threading in an application, you can create your own threads from
which to dispatch on each queue created. Alternatively a MamaDispatcher can be used, which simply

creates a new thread and starts dispatching (using MamaQueue.dispatch()) on the specified queue.

Queue Monitoring6.5

The API provides the ability to receive notifications when certain conditions on an event queue occur. For
instance, many application developers find it useful to know if the event queue is backing up, an early
indication of a slow consuming client application.

The API currently supports registering for callbacks to be invoked when a high watermark for the queue
is reached, that is, the number of outstanding events on the queue reaches a specified threshold, and for
when the number of events returns to a low watermark.

Callbacks can be registered with a MamaEventQueue. These callbacks are invoked when certain
conditions on the event queue are met. Which callbacks can be called and under what conditions they
are called is middleware-dependent. Details on middleware-specific functionality within the API can be
found in the Section 18: Configuration Reference.

In all object orientated languages the callbacks are defined as concrete implementations of the
MamaQueueMonitorCallback.

Page 27

OpenMAMA Developer's Guide

The high and low watermarks for an event queue are set via calls to MamaQueue.setHighWatermark

() and MamaQueue.setLowWatermark()respectively. Callbacks for monitoring will not be called

unless the watermark values have been set for a queue.

It is recommended that users specify a name for each queue being monitored. This will aid in logging
and debugging the application.

If a monitoring feature is not available on a particular middleware an error will be returned, or a
MamaException exception thrown.

Example 26: Queue monitoring

//Callback class for receiving queue monitor events
class QueueMonitorCallback implements MamaQueueMonitorCallback
{
 public void onHighWatermarkExceeded (MamaQueue queue, long size)
 {
 //Process the high watermark exceeded event
 }

 public void onLowWatermark (MamaQueue queue, long size)
 {
 //Process the low watermark event
 }
}

...

MamaQueue queue = new MamaQueue ();

queue.create (bridge);

queue.setQueueName ("MyEventQueue");

queue.setQueueMonitorCallback (new QueueMonitorCallback ());

queue.setHighWatermark (10000);
queue.setLowWatermark (900);

Event queue size6.5.1

An application can find out the number of events currently on the event queue at any point, independent
from the queue monitoring callbacks. This is available as MamaQueue.getEventCount().

Queue groups6.6

The Java APIs provide a further level of abstraction in the form of the MamaQueueGroup. The
MamaQueueGroup, upon construction, creates the specified number of MamaQueue and
MamaDispatcher objects and starts dispatching on the queues. The threading and dispatching is hidden
from the application developers. The MamaQueueGroup.getNextQueue() returns the next available

queue using round-robin, ensuring an even distribution of event sources across queues. For more control
over dispatching of events within an application we recommend that you manipulate and manage queues
directly by the application.

Page 28

OpenMAMA Developer's Guide

Developer Tips6.7

1. Integrate an external event loop.

The combined use of MamaQueue.dispatchEvent() and MamaQueue.setEnqueueCallback

() can be used to integrate an OpenMAMA event loop into the event loop of another application

when multi threading is being avoided. The MamaQueue.setEnqueueCallback() allows an

application to be notified of enqueue events on a specified queue without having those events being
dispatched. In the mamaQueueEnqueueCB() callback function the application can post an event to

its own event queue. When this event is dispatched the application then calls dispatchEvent().

This strategy is sometimes employed in GUIs.

2. One to one relationship between queues and threads.

For use of the API within the MAMA Advanced Publisher you have to maintain a one to one
relationship between queues and dispatching threads. This is due to the internal use of message
level sequence numbers used for data quality purposes. If dispatching from a single event queue
coming from across multiple threads, the API can no longer enforce data quality correctly as
messages cannot be guaranteed to be dispatched in the order they were received.

3. Minimize event queue growth.

It is recommended that as little time as possible is spent executing code in the callback functions/
methods. Failure to do so can result in the event queue growing, ultimately running out of memory
and/or message loss.

4. Using multiple queues/threads.

There are several reasons why you may choose to use multiple threads/queues within an application
built using the OpenMAMA API:

The application already uses an event loop to control processing. In this case the application
cannot use the main thread to call Mama::start(). The alternative here is to run Mama::

startBackground() which spawns a background thread on which to start dispatching on

the default event queue or to integrate the two event queues (see point 1 above).

The application requires fine grained control over how events are dispatched. When using the
default event queue developers have no control over how dispatching occurs. In order to leverage
the further control provided by the queue object, developers must create their own event queues
and dispatch from these on a separate thread. When this level of control is required it is
recommended that the MamaQueueGroup is not utilized.

The nature of the application dictates that separate threads are used for processing data events.
Consider the following scenario:

One event source provides message updates which require a short processing time per
message. A second event source provides message updates which require considerably more
CPU cycles to process each message. To avoid this second source negatively effecting the
processing of the first source of messages it may be beneficial to distribute the processing
across two threads; one for each message source. Note: On a single CPU machine this
approach is unlikely to provide much additional benefit.

When using multiple queues/dispatchers or the MamaQueueGroup utility class, developers need to be

Page 29

OpenMAMA Developer's Guide

aware that the callback functions/methods can be called from multiple threads.

Page 30

OpenMAMA Developer's Guide

Subscriptions7

Subscriptions in OpenMAMA provide the ability to register interest in a source of data for a specific
symbol. The subscription interface hides the underlying middleware specific subscription concept (e.g.
Listener when using the TIBCO Rendezvous middleware and Receiver when using the 29West LBM
middleware). The OpenMAMA API is used to subscribe to market data from a market data source, e.g.
the MAMA Advanced Publisher. The API also supports basic subscriptions, which are used to
subscribe to data published using theOpenMAMA publishing functionality (see Section 13: Publishing
for details). All sections of this chapter, other than Section 7.6: Basic Subscriptions, refer to market
data subscriptions.

Note Feed handlers are used throughout this section to illustrate subscribing
to market data. A MAMA Advanced Publisher can also be used.

Life Cycle of the MAMA Subscription7.1

The OpenMAMA subscription moves through a number of different states during its lifetime, as defined
in the following table.

Table 4: OpenMAMA Subscription States

State Description

Unknown The state of the subscription is unknown.

Allocated The subscription has been allocated in memory.

Setup Initial setup work has been done, mamaSubscription_activate must still

be called. Note that this state is only valid for market data subscriptions.

Activating The subscription is now on the throttle queue waiting to be fully activated.

Activated The subscription is now fully activated and is processing messages.

Deactivating The subscription is being de-activated, it will not be fully deactivated until the
onDestroy callback is received.

Deactivated The subscription has been de-activated. Messages are no longer being
processed.

Destroying The subscription is being destroyed, it will not be fully destroyed until the
onDestroy callback is received.

Destroyed The subscription has been fully destroyed.

De-allocating The subscription is in the process of being de-allocated, this state is only valid if
the mamaSubscription_deallocate function is called while the

subscription is being destroyed.

De-allocated The subscription has been de-allocated. This state is only temporary and exists
until such point as the subscription’s memory is freed. It is provided so that a
log entry will be written out.

The transitions between the various states are shown in the following state machine diagrams. The
transitions also show the function calls that are required to change state.

Page 31

OpenMAMA Developer's Guide

Figure 1: State transitions for a Basic Subscription

Page 32

OpenMAMA Developer's Guide

Figure 2: State transitions for a Market Data Subscription

Page 33

OpenMAMA Developer's Guide

Figure 3: Activating and de-activating the Market Data Subscription

Page 34

OpenMAMA Developer's Guide

Figure 4: The complete state machine for a Market Data Subscription, including the main flow and the

activation states

This lifecycle is reflected in the mamaSubscriptionState enumeration. The current state of the

subscription can be obtained using the mamaSubscription_getState function. This replaces the

legacy mamaSubscription_isActive and mamaSubscription_isValid function calls which are

now deprecated. These functions can still be used and will return ‘True’ if the subscription is in the
Activated state.

Additional Notes:

1. If a function such as mamaSubscription_activate is called and the subscription is not able to

make an appropriate transition, (as described by the state machine), then an error code of
MAMA_STATUS_SUBSCRIPTION_INVALID_STATE will be returned.

2. Calling mamaSubscription_deactivate on a subscription in the allocated, setup, deactivated or

destroyed state will have no effect and the function will simply return MAMA_STATUS_OK.
3. The unknown state indicates an error condition and should not normally occur.

Page 35

OpenMAMA Developer's Guide

Common Regular Subscription Behaviour7.2

OpenMAMA provides a number of subscription types that are described in Section 7.5: Subscription
Types. All subscriptions share the following common concepts.

SymbolNamespace & Symbol7.2.1

When a subscription is created, the user specifies a mandatory symbol namespace (e.g. "NASDAQ")
and a mandatory symbol (e.g. "MSFT").

The symbol is the instrument identifier and should be unique when combined with the source. The NYSE
Technologies Market Data Platform Feed Handler Suite refers to this as the issue symbol.

The symbol namespace is a logical feed handler group identifier as configured by the feed handler
administrators. It can be thought of as a namespace qualifier for market data and is useful in separating
two publishers of data with the same symbology on the same transport settings.

For example, with a NASDAQ UTP feed handler configured with a namespace of "UTP" and the symbol
"MSFT", using the default UTP symbology on the feed handler, represents the identifier for the NBBO
(National Best Bid and Offer) for Microsoft equities from NASDAQ.

Callbacks7.2.2

Callbacks are registered with subscriptions when they are created. The callbacks are described the
following table.

Table 5: Callbacks

Callback Invoked
onMsg() When data arrives from the network for the subscription, an event is created for the

data and placed on the specified event queue. When the event is dispatched from
the queue the onMsg() callback is invoked, passing the message details to the

application for processing.
onCreate() Invoked when a subscription creation is completed. For basic subscriptions, this

will be immediately. For regular subscriptions, this will be when the subscription
creation has been executed from the creation throttle.

onQuality() Invoked when the quality of a subscription changes
onError() Invoked when an error is encountered during the subscription creation process and

subsequent data processing.
onGap() Invoked when a gap occurs in a market data subscription, or when a recap request

is made.

Regular Subscriptions

The sending of subscription requests to the feed handler, and the registering of interests with the
underlying middleware are throttled when a regular subscription is created. This throttle is always
controlled by the internal default queue in OpenMAMA, therefore, all subscription requests are sent by
the thread calling Mama::start().

When subscriptions are created using the default queue, onCreate() is guaranteed to be called before

 onMsg() and always from the thread calling mama_start(). However, if subscriptions are created on

a user-created mamaQueue there is a possibility that onMsg() could get invoked before onCreate().

This is because onCreate() is called on the thread invoking Mama::start() whereas the onMsg()

is called on the thread dispatching from the queue that was associated with the subscription upon

Page 36

OpenMAMA Developer's Guide

creation.

Essentially, onCreate() is called as soon as the subscription request has been issued and the

interest registered with the middleware. It is at this stage that the subscription creation has been picked
off the throttle. For a user-created queue, because the data for the subscription is being dispatched on a
separate thread, the possibility exists for the data to return from the publisher and be dispatched before
the onCreate() callback gets scheduled to execute by the operating system thread scheduler.

This race condition exists as it was decided to keep the data callbacks lock-free for performance
reasons. Regardless of which order the onCreate() and onMsg() callbacks are invoked, at the time

of invocation the subscription can be treated as if it has been fully created and is considered valid in both
cases.

Basic Subscriptions

Basic subscriptions are created immediately rather than being throttled, therefore all callbacks are
invoked on the thread dispatching from the queue associated with the subscription.

Initial Images7.2.3

By default, MAMA Advanced Publishers do not send all data for a symbol with every update. They
only send modified data (deltas) or modified data along with additional specific static data. This saves on
processing in the construction of messages and bandwidth when sending data over the network. Either
option is more efficient than sending all data with every update.

While this is a very efficient mechanism, subscribing applications may have to wait an arbitrary length of
time to obtain the latest value of all available published fields. To address this problem the OpenMAMA
API provides the concept of initial images.

An initial image is a special message type that contains all the available fields in the market data
publishers cache that are configured to be published. It is effectively a snapshot in time of the net effect
of all updates on the instrument up to the point of subscription. As initial images contain all the fields in
the publisher cache, the message size tends to be significantly larger than subsequent updates.

Initial images are identified as such through use of the utility function, MamaMsgType.typeForMsg().

The MdMsgType reserved field stores this information within a message.

If this initial snapshot of data is not required, for example, for tick capture systems where only individual
updates are of interest, the receipt of initial images on subscription can be disabled via a call to
MamaSubscription.setRequiresInitial(false).

In this case, the creation of a subscription simply informs the MAMA Advanced Publisher of a new
subscriber and to start publishing for that instrument if not already doing so.

The rate at which initial images are sent can be controlled at the transport level.

Recaps7.2.4

A recap is an initial image that is sent to the API to provide the client with the latest snapshot for a
symbol in response to a data quality event on the infrastructure.

Recaps can be solicited, in that they are requested from the API in response to a sequence number gap
being detected in the inbound messages for a subscription. See Section 12: Data Quality for details on
sequence number checking in the API.

Page 37

OpenMAMA Developer's Guide

Conversely, recaps can be unsolicited, in that they are sent by the feed handlers under certain
circumstances, for example, in the event of a cancel or correction being received by the MAMA
Advanced Publisher.

The rate at which recaps are sent from the API can be controlled at the transport level.

Timeout/Retries7.2.5

A MAMA Advanced Publisher may not respond to a subscription or initial image request in a timely
fashion for a variety of reasons, such as network problems or being overloaded with requests. To further
ensure receipt of an initial image within the API a subscription supports the concept of timeout intervals
and a number of subscription retries before giving up and reporting a timeout error via the registered
callbacks.

The number of retries, set via a call to MamaSubscription.setRetries(), specifies the number of

attempts made to obtain an initial image for a subscription, with an interval defined by the timeout as
described above.

The defaults here are three retries with a 10 second timeout between each retry.

Refreshes7.2.6

A MAMA Advanced Publisher has no mechanism by which it can detect a subscribing client shutting
down (i.e. In the case of an uncontrolled shutdown). Instead, there is the concept of refresh messages
sent from the client to the MAMA Advanced Publisher to indicate that there is still some interest in the
data being published. Refresh messages are sent once an hour, distributed over the hour, for each
symbol a client has subscribed to. The MAMA Advanced Publisher stops publishing data for a symbol
if it has not received a refresh message for that symbol during a defined, configurable, period of time
(default 60 minutes).

To reduce the possibility of all clients sending refresh messages for the same symbols the MAMA
Advanced Publisher sends a response to a refresh message to all clients. Upon receipt of this
message each client puts the refreshed symbol on the end of its refresh list. Using this mechanism a
MAMA Advanced Publisher will not be flooded with refresh messages when one is sufficient.

Throttling of Subscription Creation7.2.7

By default, when OpenMAMA subscriptions are created, the subscription request is not sent
immediately from the API. Instead, the request is placed on the default throttle queue to be sent at a
later stage. Sending of subscription requests does not start until dispatching on the default event queue
has commenced, which happens automatically under the hood in Java. This behaviour protects the
messaging backbone from a storm of subscription requests and the MAMA Advanced Publisher from
becoming overwhelmed with such requests.

The default throttling rate within the API, if none is specified, is 500 msg/sec. It is recommended that
this value is significantly lowered in the following cases

When using subscription types that result in larger initial values, e.g. Group and order book
subscriptions.
If there are a large number of subscribing applications that start up at the same time.

The throttling is controlled at the transport level and applies to all subscriptions created on that transport
(see Section 5: Transports, for details).

Page 38

OpenMAMA Developer's Guide

Caching of Updates Prior to Initial7.2.8

It is possible, on subscription creation, due to updates and initial values arriving along different
communication paths, that the updates and initial values arrive out of sync. Consider the following
scenario:

1. The MAMA Advanced Publisher is already publishing updates for a particular symbol (the client
has subscribed after market open).

2. The client creates a subscription request.

3. The MAMA Advanced Publisher creates an initial image message from the current state of the
cache for the subscribed symbol.

4. An update arrives to the MAMA Advanced Publisher for that symbol immediately after the initial
value message has been created. The effects of this update on the MAMA Advanced Publisher
symbol cache are published as normal.

5. The update from the previous step arrives at the client before the previously created initial value
message. This could happen as the initial may be being published on TCP and the update on
multicast.

6. The next update received at the client is not the next expected sequence number for that symbol.
The client detects a gap and issues a recap request.

This scenario can lead to a number of recaps being send from a client resulting in an arbitrary amount of
time before the client recovers. For instance if the scenario outlined occurred for an instrument that was
not very liquid it may be some time before the feed handler receives and sends another update to the
client.

To reduce the chance of this occurring the API can be configured to cache updates that arrive prior to
receiving an initial image for a subscription. If the update subsequent to the initial value results in a gap
being detected the API checks its message cache for the missing update before resorting to issuing a
recap request.

The size of the cache used can be controlled on a per subscription basis using subscription.

setPreInitialCacheSize(). The default is a cache of 10 messages to be stored prior to receiving

the initial image.

Creating and Destroying Subscriptions7.3

Subscriptions require that a transport, source and symbol are specified upon creation.

Subscriptions must be destroyed from within the subscriptions' own callbacks or from other event
callbacks on the same queue as the subscription callbacks are being dispatched.

Example 27: Creating and destroying a subscription

class DisplayCallback implements MamaSubscriptionCallback
{
 public DisplayCallback () {}

 public void onCreate (MamaSubscription subscription)
 {
 //The subscription has been created

Page 39

OpenMAMA Developer's Guide

 }

 public void onError (MamaSubscription subscription,
 short wombatStatus,
 int platformError,
 String subject,
 Exception e)
 {
 //An error has occurred during subscription processing
 }

 public void onQuality (MamaSubscription subscription,
 short quality)
 {
 //A data quality event has occurred.
 }

 public void onMsg (MamaSubscription subscription,
 MamaMsg msg)
 {
 //process the message
 }

 public void onRecapRequest (MamaSubscription subscription)
 {
 //A recap request has been sent for this subscription
 }

 public void onGap (MamaSubscription subscription)
 {
 //A gap has been detected for this subscription
 }

 public void onDestroy (MamaSubscription subscription)
 {

//The dubscription has been destroyed
 }
}

DisplayCallback callback = new DisplayCallback ();
MamaSubscription subscription = new MamaSubscription ();

//set MamaSubscription properties

MamaSource source = new MamaSource ("SourceId", transport, "NASDAQ");

subscription.create (queue,
 callback,
 source,
 "MSFT",
 "My Closure");

....

//Destroy the subscription
subscription.destroy ();

Page 40

OpenMAMA Developer's Guide

Subscription Types7.4

There are a number of different types of subscriptions that can be created using OpenMAMA,
depending on the nature of the data being subscribed to. The type of subscription being created and its
behaviour are controlled via two properties of the subscription that can be specified at creation time.
These are:

SubscriptionType:

MAMA_SUBSC_TYPE_NORMAL - Regular market data subscription
MAMA_SUBSC_TYPE_BOOK - Order Book Subscription
MAMA_SUBSC_TYPE_GROUP - Group subscription
MAMA_SUBSC_TYPE_BASIC - Basic Subscription
MAMA_SUBSC_TYPE_DICTIONARY - Dictionary Subscription
MAMA_SUBSC_TYPE_SYMBOL_LIST - Symbol List Subscription
MAMA_SUBSC_TYPE_SYMBOL_LIST_BOOK - Book Symbol List Subscription

ServiceLevel: The additional behavior for the specific type of subscription. Currently only two of the
values are supported:

MAMA_SERVICE_LEVEL_REAL_TIME - A real time subscription receives updates when they
occur.
MAMA_SERVICE_LEVEL_SNAPSHOT - A snapshot subscription receives only an initial value
and no subsequent updates.

The default values for these, if not explicitly specified upon subscription creation, are
MAMA_SUBSC_TYPE_NORMAL and MAMA_SERVICE_LEVEL_REAL_TIME resulting in a real time
market data subscription.

The behaviour of each of the subscription types below can be further qualified through the use of the
service level.

Table 6: Subscription Types

Subscription
Type

Value Description

Normal (Market
Data)

MAMA_SUBSC_TYPE_NOR
MAL

A regular market data subscription, used to subscribe to
record-based instruments from the MAMA Advanced
Publisher.

Order Book MAMA_SUBSC_TYPE_BOO
K

Use to subscribe to structured order books from MAMA
Advanced Publishers that support the format. A
structured order book comprises multiple price levels,
each containing multiple entries (orders). The details of
this structure differ depending on the underling message
format used and any optimization configuration enabled
on the MAMA Advanced Publisher. OpenMAMDA is
required to leverage the power of structured order books.

Group MAMA_SUBSC_TYPE_GRO
UP

A group subscription is an OpenMAMA concept,
whereby a client can subscribe to a single 'group' symbol
and receive initial values and updates on an arbitrary
number of symbols associated with this symbol in the
feed handlers.

Basic MAMA_SUBSC_TYPE_BAS
IC

Allows subscription to non-market data that is being
published via a OpenMAMA based publisher. As initial

Page 41

OpenMAMA Developer's Guide

Subscription
Type

Value Description

values are a concept specific to the MAMA Advanced
Publisher, the only value of service level that is
supported for basic subscriptions is
MAMA_SERVICE_LEVEL_REAL_TIME (the default
value when creating a subscription). A basic subscription
does not provide initial values, recaps, data quality or
refreshes. Throttling of subscription requests, however, is
supported.

Symbol List MAMA_SUBSC_TYPE_SYM
BOL_LIST

Returns the full list of symbols from the MAMA
Advanced Publisher. The actual symbol supplied when
creating the subscription is irrelevant and may be NULL;
only the subscription type matters. The symbols are
returned as a field in a message callback, and are not
stored anywhere else. It is up to the user to parse the
MamaSymbolList field and store the symbols, or make
individual subscriptions to each symbol.

When the symbol list subscription is made, a series of
initial messages will be received. Each of these
messages will contain a field "MamaSymbolList" (FID
81). This field will contain a subsection of the full symbol
list from the feed handler. By default, each initial will
contain 500 symbols (this number is configurable in the
feed handler). This field will be in the form of a comma
separated list of strings.

After one minute, a message of type
MAMA_MSG_TYPE_END_OF_INITIALS will be received.
At this point, no further initials will be received for the
symbol list subscription and it may be assumed that all
symbols currently being published by the feed handler
have been received.

Note: It is not possible to determine how many initial
messages will be received.

Book Symbol
List

MAMA_SUBSC_TYPE_SYM
BOL_LIST_BOOK

Has the same functionality as the symbol list
subscription, but only returns order book symbols.

Basic Subscriptions7.5

A basic subscription allows users of the OpenMAMA API to subscribe to non-market data that is being
published via an OpenMAMA based publisher. A basic subscription is created by specifying a
subscription type of MAMA_SUBSC_TYPE_BASIC. As initial values are a concept specific to the
MAMA Advanced Publisher, the only value of service level which is supported for basic subscriptions
is MAMA_SERVICE_LEVEL_REAL_TIME (the default value when creating a subscription). A basic
subscription does not provide initial values, recaps, data quality or refreshes. Throttling of subscription
requests, however, is supported.

Page 42

OpenMAMA Developer's Guide

Entitlements8

When subscribing to market data, and when that data is configured to include entitle codes, the API
enforces entitlements as defined in the entitlements server. Entitlements are not enforced for 'basic'
subscriptions.

Note If developing against non-entitled APIs, please be aware of the the client
responsibilities outlined in the licensing file, "Entitlements Check
Disclaimer".

The OpenMAMA API obtains its user based entitlements on application startup. The entitlements for
the logged on application user are obtained from a HTTP server. The API obtains its list of available
entitlements servers from the mama.properties file. This occurs on the initial call to Mama.open().

The following example shows how to specify the location of entitlement servers using a comma
separated list.

Example 28: Specifying the location of entitlement servers

entitlement.servers=server1:9090,server2:8080

The API checks each server, using round-robin, to locate the entitlements for the current user. If no
entitlements servers are present, or no entitlements exist for the current user, the call to Mama.open()

fails, with a status of ENTITLE_NO_SERVERS_SPECIFIED or ENTITLE_NO_USER, respectively.

Entitlements are enforced at two points during the subscription process:

1. At the point of subscription creation.

When a subscription is being created the API checks the entitlement rules for the user to determine
whether there are sufficient privileges to allow the user to create the subscription. This check is
based on the symbol string being subscribed to. If the user is not entitled to subscribe to the symbol
in question, the call to create() returns a value of MAMA_STATUS_NOT_ENTITLED.

2. On receipt of the first update to the client.

The user must also be entitled to view data with a specific injected entitle code. When the API gets
the first message for a subscription it checks if the user is entitled to view data with the specific
entitle code. If the user is not entitled to this code the onError() subscription callback is invoked

with an error code of MAMA_STATUS_NOT_ENTITLED.

Note The entitlements are requested via HTTP GET to the entitlements
server. If this is not possible please contact your system administrator.

Page 43

OpenMAMA Developer's Guide

Note If a message with an injected entitle code is received by a basic
subscription it will be rejected, the assumption being that this is a
market data message and should not be available to basic data
subscribers.

Page 44

OpenMAMA Developer's Guide

Threading9

This section identifies the threads on which the various callbacks within the API are invoked. In the
majority of cases the threading model used is the same across language variations and middlewares.
Where the API deviates from this, details, and an explanation, are provided.

Note The "Default Queue" is the thread that invokes Mama.start(), and

therefore the thread that is dispatching on the internal default event
queue. In the Java API, an API-created thread is responsible for
dispatching on the default event queue.

The "Dispatch Queue" is the thread currently dispatching on the associated event queue. This can be
the default queue or a user created event queue (MamaEventQueue).

The following callbacks are those that are associated with a MamaSubscription.

Table 7: MamaSubscription Callbacks

Callback Invoking thread Language
deviation

Middleware deviation

onMsg() Dispatch Queue none none
onError() Dispatch Queue none none
onCreate() Default Queue[a] none
onQuality() Dispatch Queue[b] See middleware

specific
variations.

NYSE Technologies Data Fabric:
onQuality() events due to

transport callbacks will be invoked
from the transport thread.
29West LBM: onQuality()

events are always on the dispatch
thread.

onGap() Dispatch Queue none none
onRecapRequest() Dispatch Queue none none

Notes:
The onCreate() callback is always called from the thread dispatching on the default queue. This

is because subscriptions are centrally throttled on a per transport basis. The effect is when creating
subscriptions using an OpenMAMA queue other than the default queue, it is possible that the
onMsg() callback may get invoked prior to the invocation of the onCreate() callback. This

behavior is being maintained as it is preferable to the overhead and latency that would be incurred in
trying to synchronize the two.
The majority of invocations of onQuality() will be called from the thread dispatching on the

subscriptions associated event queue. When a subscription state is set to stale as a result of a
detected gap, the onQuality() callback is always invoked from the dispatch queue.

Table 8: MamaTimer Callbacks

Callback Invoking thread Language
deviation

Middleware deviation

onTimer() Dispatch Queue None None

Page 45

OpenMAMA Developer's Guide

Table 9: MamaIo Callbacks

Callback Invoking thread Language
deviation

Middleware deviation

onIo() Dispatch Queue None None

Table 10: MamaTransport Callbacks

Callback Invoking thread Language
deviation

Middleware deviation

All callbacks See middleware specifics See
middleware
specifics

NYSE Technologies Data Fabric:
Transport level events (connect/
disconnect etc) are invoked from
the IO thread internal to wombat
middleware.
29West LBM: N/A

Table 11: Event Queue Callbacks

Callback Invoking thread Language
deviation

Middleware deviation

onHighWatermarkExc
eeded()

Middleware specific None NYSE Technologies Data Fabric:
Invoked from the thread dispatching
on the monitored queue.
29West LBM: Invoked from the
LBM context thread. This is the
thread responsible for enqueing the
event queue. Stalling in this
callback can result in data loss as
this thread is also responsible for
draining incoming sockets.

onLowWatermark() Middleware specific None As with
onHighWaterMarkExceeded()

onEvent() Dispatch Queue None 29West LBM: LBM does not
expose a mechanism to directly
enqueue events onto an LBM
queue. In OpenMAMA, this
functionality is implemented using
zero-length timers. However, due
to the nature of the timer
implementation in LBM, under high
load it is not possible to guarantee
that the onEvent() callbacks for

each event enqueued will fire in the
same order as the events were
enqueued.

Table 12: MamaDqPublisher Callbacks

Callback Invoking thread Language deviation Middleware deviation
onCreate () Default Queue None None
onNewRequest () Dispatch Queue None None
onRequest () Dispatch Queue None None
onRefresh () Dispatch Queue None None
onError () Dispatch Queue None None

Page 46

OpenMAMA Developer's Guide

OpenMAMA Dictionary10

The Data Dictionary is a data structure, obtained from the advanced publisher, which provides a mapping
between field identifiers (FID's) and field names for a superset of all fields that can be sent on the
platform. It also provides data type information for each of the fields.

Creating a data dictionary in OpenMAMA is similar to creating a subscription, as the data dictionary
request is a specialized form of subscription.

Creating the Data Dictionary (from platform)10.1

Example 29: Creating the Data Dictionary

boolean dictionaryComplete = false;

...

class DictionaryCallback implements MamaDictionaryCallback
{
 public synchronized void onTimeout ()
 {
 notifyAll (); //Timedout fetching dictionary
 }

 public synchronized void onError (final String errMsg)
 {
 notifyAll ();//An error was encountered fetching the dictionary.
 }

 public synchronized void onComplete ()
 {
 dictionaryComplete = true;
 notifyAll ();
 ////The dictionary has been successfully fetched.
 }
}

...

DictionaryCallback callback = new MamaDictionaryCallback ();
MamaDictionary dictionary = null;

synchronized (callback)
{
 MamaSubscription subscription = new MamaSubscription ();

 dictionary = subscription.createDictionarySubscription (
 callback,
 transport,
 "WOMBAT");
 callback.wait (30000);

 if (!dictionaryComplete)
 {
 System.err.println ("Could not retrieve dictionary");
 System.exit (1);

Page 47

OpenMAMA Developer's Guide

 }
}

....

//Dictionary retrieval has been successful. Process subscriptions etc.

The dictionary request has successfully completed and the mamaDictionary is available for use once the
 onComplete() callback function/method has been invoked.

If there has been no response to the data dictionary request, the onTimeout() callback function/

method is invoked after 60 seconds has elapsed.

If any other error was encountered during the processing of the request, the onError() callback

function/method is invoked passing back the appropriate error status.

The data dictionary can be obtained from a single MAMA Advanced Publisher instance. However, it is
more typical that a dedicated mamadict process is running on the network that provides a superset of all
the fields being used across all the market data publishers on the market data backbone.

The default source value for data dictionary retrieval is "WOMBAT". This value is configurable for the
dedicated dictionary publisher.

Using the Data Dictionary10.2

The OpenMAMA representation of the Data Dictionary comprises a number of MamaFieldDescriptor
objects, one for each field in the dictionary. As market data messages on the OpenMAMA platform
generally only contain the FID, the dictionary can be interrogated at run time to find a full description of a
message field. Not sending the field name is an optimization when sending messages, saving CPU
processing time in the construction of the messages, and bandwidth by reducing the size of the
messages.

The MamaFieldDescriptor can be obtained in three ways from the dictionary: by FID, by name, or
through iteration across all field descriptors. For example, if the FID for a field is available the field
descriptor for the field can be obtained using MamaDictionary.getFieldByFid().

Once the MamaFieldDescriptor has been obtained, the field details can be accessed using the
functions:

MamaFieldDescriptor.getName()
MamaFieldDescriptor.getFid()
MamaFieldDescriptor.getType()
MamaFieldDescriptor.getTypeName()

Developer Tips10.3

The data dictionary can be serialized to and from a mamaMsg (the dictionary is received from the
advanced publisher as a MamaMsg). The dictionary supports the following two operations to facilitate
this: mamaDictionary_getDictionaryMessage() and

mamaDictionary_buildDictionaryFromMessage().

Once the underlying mamaMsg for a dictionary has been obtained, the message bytes can be written to
file (see Section 11: Messages). The message can then be later reconstructed from the bytes in the file
and from this message the dictionary can be recreated. Memory for the new dictionary is allocated

Page 48

OpenMAMA Developer's Guide

through the mamaDictionary_create()function.

Note This functionality is not available in Java.

Example 30: Serializing the data dictionary
MamaDictionary* dictionary = new MamaDictionary;
dictionary->buildDictionaryFromMessage (message);

Page 49

OpenMAMA Developer's Guide

Messages11

The mamaMsg abstracted interface provides a wrapper for the underlying wire message formats
supported on a particular messaging middleware.

Accessing Data11.1

The mamaMsg object supports direct field access through a suite of strongly typed accessor functions/
methods. For example, mamaMsg_getI8() -> mamaMsg_getF64().

A scalar field can be obtained through an accessor for a type larger than the one being accessed, when
the larger type can hold the smaller without loss of precision. For instance, mamaMsg_getI32() can

be used to get fields of type U16, I16, U8 etc.

In the Java API, each of the accessor methods are overloaded with a version that accepts a
MamaFieldDescriptor instead of the name/FID combination. It is recommended that applications use this
variation of the accessor when accessing field data. A representation of the field data as a string can
also be obtained via mamaMsg_getFieldAsString(). However, this is less efficient than using the

correct type accessor for the field.

When accessing string fields using the getString method MamaMsg.getString, the result points to

the copy of the string held internally in the mamaMsg object. This memory is owned by the object and
does not need to be explicitly freed.

If one of the strongly typed accessors is called on a mamaMsg and the field is not found, the function
returns a mamaStatus value of MAMA_STATUS_NOT_FOUND, or an exception is thrown (C++/Java).

Message Creation11.2

Applications need to create their own mamaMsgs when using the publishing capability of the API.

A mamaMsg can be created in a number of ways. The default MamaMsg.create() creates a

message with the default payload bridge MamaMsg (char payloadId) creates a message using the

specified payload. A message can be recreated from a byte buffer using MamaMsg.

createFromByteBuffer(). See Section 11.5: Developer Tips for more information.

Note The OpenMAMA API has an internal list of reserved fields used for
passing message header information and other data. It is strongly
recommended that users of the API do not use FIDs of 100 or lower, or
the field 496 if using entitled APIs, as these are used to describe the
internal reserved OpenMAMA fields.

Note The FID uniquely identifies a field within a message, not the FID/name
combination. This is an important distinction as the name is only used
to search for fields when a field with the specified FID is not found.

Page 50

OpenMAMA Developer's Guide

Example 31: Message creation

MamaMsg msg = new MamaMsg ();
MamaMsg msg = new MamaMsg (MamaPayloadType.MAMA_PAYLOAD_AVIS);

Fields can be added to messages using the individually typed mutator functions available. When adding
fields to messages both the field name and the FID can be specified.

Field Iteration11.3

OpenMAMA enables iteration through all fields in a message. An application can pass a callback to
MamaMsg.iterateFields() which is invoked for each field in the message. The callback function/

method provides access to a MamaMsgField object. The field type can be obtained from the
MamaMsgField object and the appropriate accessor can be invoked. All typed accessor functions or
methods for the MamaMsg are also available for the MamaMsgField object. The field also supports
obtaining the field data as a string using MamaMsgField.getAsString(). This approach is less

efficient than strong typed access, in the same way as when obtaining stringified data directly from a
message.

Example 32: Field iteration

class MsgIteratorCallback extends MamaMsgFieldIterator
{
 public void onField (MamaMsg msg,
 MamaMsgField field,
 MamaDictionary dict,
 Object closure)
 {
 //process the data in the MamaMsgField
 }
}

....

msg.iterateFields (new MsgIteratorCallback (),
 dictionary,
 "My Closure");

There is also a separate iterator implementation as an alternative to the callback method. Using this the
iterator points to a particular MamaMsgField object, and can be incremented to the next field by the
user. A NULL is returned after the last field has been returned. It is possible to reset the iterator to the
start of the message at any time.

Each message can only have one iterator associated with it, though the same iterator can be used for
more than one message.

Special Data Types11.4

Some data types supported by a mamaMsg are specific to the OpenMAMA API.

Page 51

OpenMAMA Developer's Guide

MamaDateTime11.4.1

A date/time representation with additional hints for precision, advanced output formatting and support for
time zone conversion (using the MamaTimeZone type).

Hints include:

Whether the time stamp contains a date part, a time part, or both.
The level of accuracy (if known) of the time part e.g., minutes, seconds, milliseconds, etc.

The output format strings are similar to that available for the strftime() function, plus:

%; adds an optional (non-zero) fractional second to the string
%: adds fractional seconds based on the accuracy hint (including trailing zeros, if the accuracy hint
indicates it should).

The following table provides examples of output.

Table 13: MamaDateTime Examples

Actual Time Output of "%T%;" Output of "%T%:"

01:23:45 and 678 milliseconds 01:23:45.678 01:23:45.678

01:23:45 and 0 milliseconds 01:23:45 01:23:45.000

MamaPrice11.4.2

MamaPrice is a special data type for representing floating point numbers that often require special
formatting for display purposes, such as prices. MamaPrice contains the 64-bit (double precision)
floating point value and an optional display hint.

A MamaPrice may be marked as valid or invalid. A valid MamaPrice is one that contains a currently valid
value. This can be used to differentiate between a zero (valid) value and an absence of value for example.
A MamaPrice is set to valid by default when it is created with a value, or a value is explicitly set.

The set of display hints includes hints for:

the number of decimal places
the fractional denominator, to a power of two
special denominators used in the finance industry e.g., halves of 32nds

Page 52

OpenMAMA Developer's Guide

Developer Tips11.5

The underlying message can be written to a byte buffer, which can be serialized to file. A message can
be created from an existing byte buffer. The mamaMsg determines the underlying message format from
the provided byte buffer and constructs the message accordingly.

Note The buffer returned is not a copy and therefore should not be altered
once obtained. To do so can corrupt the message. Byte buffers cannot
be used in Java.

Obtain your MamaFieldDescriptor based on the field name from the data dictionary on application
startup. Cache the MamaFieldDescriptors and use them for field access later on, removing the need to
know the actual FIDs for individual fields in messages.

Do not delete messages received in subscription callbacks. The API reuses message instances for
performance reasons. If a message is required to live beyond the scope of a callback use MamaMsg.

copy() to create a deep copy of the message. Alternatively MamaMsg.detach() transfers ownership

of the message from the API to the caller of the function. In this case it is the responsibility of the calling
application to destroy the message when it is no longer needed. Similarly, when extracting sub-
messages/arrays of sub-messages from a message, the memory for these is freed/deleted when the
parent message goes out of scope in a callback or is deleted if owned by the application using the API.

Java-Specific Developer Tips11.6

When using the Java version of the OpenMAMA API the most efficient way to access the message
differs from the other languages. The callback iteration method is slower than direct access as the
upward call through the Java boundary is relatively expensive compared to downward calls. Therefore,
direct access of the required fields is the best method for extracting the fields from the message.

When using the MamaFieldDescriptor to access a field from a message, we recommended extracting
the FID from the descriptor to pass to the get() method, rather than passing in the entire field

descriptor. This removes the need for the name string to be converted for possible use at the C layer.

MamaMsg Wire Format Conversion Matrix11.7

Figure 5: MamaMsg Wire Format Conversion Matrix for Java shows the recommended possible
data type conversions from MamaMsg wire format types when extracting data from a MamaMsg field
that are supported across all middlewares and message types.

Note Other conversions may be possible depending on the middleware and
message type being used.

Page 53

OpenMAMA Developer's Guide

Figure 5: MamaMsg Wire Format Conversion Matrix for Java

Page 54

OpenMAMA Developer's Guide

Data Quality12

The OpenMAMA API provides a number of features to ensure the integrity of the inbound data when
subscribing to market data.

Note This does not apply to 'basic', non market data, subscriptions.

Messages are sent with an injected sequence number field (MdSeqNum, FID 10) which contains a
sequence number for each symbol (each individual symbol within a group subscription has its own
sequence number). When a gap is detected in this sequence number OpenMAMA marks the message
as being stale (STATUS_STALE) before passing the message to the client application. The API
requests a recap image for the symbol in question. Once the recap has been received the API resets the
internal expected sequence number and marks all subsequent messages as being OK (STATUS_OK).

Recaps are generally solicited from a client when a sequence number gap is detected. However, after a
fault tolerant takeover the new primary may send unsolicited recaps for all instruments that have
changed during a configurable interval. In this case the receipt of the recap message is not preceded
with a gap callback. Recaps are sent using broadcast from the MAMA Advanced Publisher. Therefore,
a client may receive an unsolicited recap as a result of another client's request. Again, this recap is not
preceded with a gap callback notification. In each of these cases, all clients subscribed to the recapped
instrument on that transport receive the recap.

The sending of recap requests is controlled in the same manner as initial value requests. A configurable
number of recap requests can be sent across a specified interval. If a recap, after the specified number
of attempts have been made, is not received, the onError() callback is invoked with a status of

MAMA_STATUS_TIMEOUT. Under normal stable operating conditions a timeout for a recap should not
occur. If encountered it is generally an indication of problems with the client and/or environment. The
recommended action is to recreate the subscription (the abnormal condition possibly being transient)
and alert administrator(s) to a possible application/environment issue. This course of action applies
equally to recap timeouts for group subscriptions.

In the API, when a sequence number gap is detected, the subscription onQuality() callback is

invoked with a value of MAMA_QUALITY_STALE. Once the condition has been resolved (a recap
received), the onQuality() callback is invoked once again with a value of MAMA_QUALITY_OK. For

Java, see the static constant fields in MamaQuality.java.

Subscription data quality events can be captured by implementing the onGap() and onRecapRequest

() subscription level callbacks.

The following describes the series of events that occur within the API when a gap is detected:

1. OpenMAMA detects a sequence number gap for an instrument.

2. The onGap() callback is invoked.

3. The subscription onRecapRequest() callback is invoked. A recap is requested if the subscription

does not currently have a status of STALE and is not already waiting for the response to a recap
request.

4. As this is a quality change from OK to STALE the onQuality() callback for the subscription is

Page 55

OpenMAMA Developer's Guide

invoked with a status of STALE.

5. The message is passed up to the application with a status of STALE.

6. If any updates are received prior to the recap being received, the onGap() callback is invoked and

the message is passed to the application with a status of STALE. This does not result in
onQuality() being invoked, as this gap does not result in a quality state change, or a recap being

requested, as the API has already sent a request and is waiting for a response.

7. The requested recap arrives.

8. The onQuality() callback is invoked with a status of OK.

9. The message is passed to the application.

Figure 6: Data Quality 1

Page 56

OpenMAMA Developer's Guide

Figure 7: Data Quality 2

Sequence number checking can be disabled in the API if required. Calling MamaSubscription.

setRecoverGaps() informs the API to no longer check the injected sequence number for gaps.

Sequence number gaps can be indicative of a number of possible problems:

Data loss on the inbound OS socket buffers (client machine - multicast).

This can result from the client application monopolizing the CPU for a prolonged period of time
thereby being unable to consume data from the inbound socket buffer in a timely fashion.

Increasing the OS inbound socket buffer size can help to address this problem. The increased buffer
size helps deal with short lived events that consume all CPU cycles. However, if the client continues
to consume all CPU cycles, increasing the socket buffer sizes only delays the inevitable.

This problem typically occurs with multicast data:
For TIBCO Rendezvous based clients, it is the CPU of the Rendezvous Daemon (RVD) that is of
concern.
For 29West LBM based clients, it is the CPU of the application using the 29West LBM libraries
that is of concern.

Data loss on the outbound socket buffers (sending machine - TCP).

This can result from a client application being unable to consume inbound data as quickly as it is
being sent. The likely cause of this is the client application using all CPU cycles for a period of time.

Page 57

OpenMAMA Developer's Guide

Unlike multicast, which sends as fast as possible regardless of the ability of the client to keep up,
TCP enforces flow control if a client cannot process messages in a timely fashion and buffers data
until such time as the client can process again. If this condition persists the sender buffers will
ultimately overflow and lose data.

This occurs with 29west LBM TCP and communication between an RVD and the TIBCO
Rendezvous API.

The ability for a client application to consume data from an incoming socket buffer can be impacted
by a number of sources of resource contention. For example:

Running out of physical memory resulting in significant paging.
High levels of context switching on an overloaded machine - e.g. very high load average on Linux.
Significant IO blocking.
Lack of available CPU cycles.

Data loss - network.

Various network conditions can result in lost data. Such as:
unreliable cabling
mis-configured switches
mis-configured NIC's
router buffer overflow
congested network

The OpenMAMA API also attempts to monitor the health of the underlying messaging infrastructure.
Upon detecting a problem like a failed transport, an overflowing queue or a slow consumer, the API
marks all inbound messages as 'possibly stale' (MAMA_QUALITY_MAYBE_STALE) while the condition
persists. OpenMAMA continues to mark messages as STATUS_STALE while the condition persists
and does not request a recap for the subscriptions until the problem subsides.

Note Messaging infrastructure level checking is only currently available on the
TIBCO Rendezvous platform

Note The behavior of data quality in OpenMAMA does not vary with
middleware.

Page 58

OpenMAMA Developer's Guide

Data Quality for Group Subscriptions12.1

Items within a group subscription have their own individually tracked sequence number. As such, data
quality for groups is tracked on a per item basis. On detecting a gap for an item within a group
subscription a recap is requested for that item only.

Data Quality and Fault Tolerant Takeovers12.2

The MAMA Advanced Publishers can be configured to run as primary/secondary pairs in hot/hot fault
tolerant mode. Any any point in time only the primary feed is publishing data. When a fault tolerant event
occurs, a secondary publisher assumes the role of primary and all instruments that have ticked during a
configurable period longer than the fault tolerant takeover interval are recapped by the new primary. It is
then assumed that data for all remaining instruments are in sync with the last message sent by the
previous primary.

The OpenMAMA API tracks the senderId, a 64 bit field that uniquely identifies a publisher on the
platform (MamaReservedFieldSenderId, FID 20), if present. A change in the sender Id is taken to
represent a fault tolerant event at the publisher level. The current behaviour is to assume that an update
with a different senderId is the next expected update, and to reset the internal data quality state with the
senderId and sequence number of the message, marking the subscription quality as OK if required.
Unsolicited recaps will have been sent from the new primary feed on any symbols for which all updates
may not have been received.

Page 59

OpenMAMA Developer's Guide

Publishing13

Although the OpenMAMA API is primarily used within subscribing applications, it can also be used for
publishing. Data can be published on a particular symbol/topic, in either a request response paradigm or
the normal publish-subscribe environment. Two types of publishing are available: basic and advanced.

Basic publishing is the counterpart to basic subscriptions. Basic subscriptions do not require initials,
seqnums, refreshes and so on, and basic publishing does not cater for these either. It allows the
sending of simple messages of any fields with or without field names or FIDs. Basic publishing is
recommended in a generic messaging environment or for admin and control messages between market
data applications.

Advanced publishing is a much stricter framework that is designed to provide the necessary tools for
building a full market data publishing source for fully interacting with OpenMAMA clients. The advanced
publishing classes build on the basic publisher but still use the same underlying concepts.

Basic Publishing13.1

Data is sent from a MamaPublisher object. On creation of a publisher, a transport and an outbound

topic are specified. The outbound topic ("MY_PUB_TOPIC") is the symbol or topic for which a
subscribing application must create a basic subscription for.

Example 33: MamaPublisher

MamaPublisher publisher = new MamaPublisher ();
publisher.create (transport, "MY_PUB_TOPIC")

Sending a message from a publisher is straightforward: use the send() method, passing in the

MamaMsg object to be sent. A message published in this fashion is sent from OpenMAMA
immediately. However, depending on the middleware configuration, there may be a short delay before its
actually sent. The message is normally sent from the thread calling send(), but there are some

exceptions to this depending on middleware configuration.

Example 34: send

publisher.send (msg);

If there is a need to control the publish rate of messages, use sendWithThrottle(). This places the

message or action on the internal throttle queue to be sent at some time in the future. The throttle rate of
the transport, on which the publisher was created, is used. The default rate is 500 per second. When the
message is sent, a complete callback will be called which is passed into the sendWithThrottle()

method. It is the responsibility of the application to manage the life cycle of messages sent in this
fashion. Throttling is enabled if the throttle value is greater than "0". Throttling occurs on the default
threads and the request will be sent from there. Setting the throttle rate to "0" will disable throttling and
the request will be sent from the thread creating the subscription.

Example 35: sendWithThrottle

class SendComplete implements MamaSendCompleteCallback
 {
 public void onSendComplete (MamaPublisher publisher,
 MamaMsg msg,
 MamaStatus.mamaStatus status,
 object closure)

Page 60

OpenMAMA Developer's Guide

 {
 //Check the status of the call.
 //Destroy the message or reuse.
 }
}
MamaSendCompleteCallback cb = new MamaSendCompleteCallback ();
publisher.sendWithThrottle (msg, cb, closure);

Request/Response13.1.1

Request/response communication involves a requester of data issuing a request on a topic to responder
(s) of data for that topic on a particular transport. A requester can receive multiple responses to a
request. The response is always sent over unicast. Request/response communication in OpenMAMA is
achieved through the use of MamaPublisher and MamaInbox objects.

To make a request in OpenMAMA, a message is sent from a publisher and is associated with an
instance of an inbox. The inbox is the destination recipient for any responses to the issued request. A
callback is registered with the inbox upon creation and is invoked whenever any responses to the
request are received by the API. Inbox requests can be throttled in the same way as non point-to-point
messages and are affected by the same threading conditions.

Request messages arrive to the onMsg() callback for basic subscriptions on particular topics. A

message is identified as being a request via a call to the MamaMsg.isFromInbox() method. The

MamaPublisher.sendReplyToInbox() method is used to actually send the response message to

the request. Both the request message and the new response message are passed to the method when
it is invoked.

Advanced Publishing13.2

For advanced, or data quality publishing, the DQPublisherManager is the central class for advanced
publishing. It is responsible for the namespace subscription, listening for subscription requests, and
handles the DQPublishers, created to respond to those requests. There are also mechanisms for
handling refresh messages and synch requests.

Creating a publisher manager requires a transport, a queue, a symbol namespace, the necessary
callbacks and an optional root. The root is an identifier specific to the platform. The default is _MD,
which is what the client applications subscribe to. For publishing a dictionary the default is _MDDD.

Example 36: DQPublisherManager

mamaDQPublisherManager_allocate(&pubManager);
mamaDQPublisherManager_create (pubManager,
 transport,
 queue,
 callbacks,
 sourcename,
 root,
 NULL);

Upon creation, the publisher manager creates a subscription to listen for requests on the given
namespace. When a new request is received by the publisher manager it calls an onNewRequest
callback. The callback supplies the symbol from the request as well as the type and request type. The
message, containing the IP address of the requesting client machine, is also supplied.

Page 61

OpenMAMA Developer's Guide

Example 37: onNewRequestCb

onNewRequestCb (mamaDQPublisherManager pubManager,
 const char* symbol,
 short subType,
 short msgType,
 mamaMsg msg);

When the request has been received, and if the publishing application can supply data for the requested
symbol, then the publishing application should create a publisher and add it to the manager.

Example 38: mamaDQPublisherManager_createPublisher

mamaDQPublisherManager_createPublisher (pubManager, symbol, closureData, &symbolPub);

If the symbol should not be published, then the request should be ignored and the subscription will
timeout on the client side.

A caching structure may also be added at this point. Neither the publisher or the publishing manager
interact with the caching structure directly, and it is up to the client application to use a structure which
best suits that application. The example applications can use either a simple message or a full field
cache.

When creating the publisher, it can be configured in a number of ways. Setting the initial seqnum to "0"
means that seqnum is not sent and this effectively turns off recapping. Initials and updates are handled
as normal, but if a gap is detected the client will be unable to recover. By default a seqnum is added to
every message. Sender ID is also added to every message, unless it is set to "0" explicitly. The
msgstatus, also present in every message, is set to whatever the status on the publisher is at the time
of send. Default status is MAMA_STATUS_OK, but this can be changed to STALE or MAYBE_STALE
as required.

Example 39: Configuring the publisher

mamaDQPublisherManager_setStatus (pubManager, status);
mamaDQPublisherManager_setSenderId (pubManager,senderid);
mamaDQPublisherManager_setSeqNum (pubManager, num);

The first message published in response to a new request should be of type INITIAL or RECAP. This is a
full image of the caching structure and is sent using the send reply method.

Example 40: Obtaining the first message

mamaMsg_updateU8(initialMsg, NULL, MamaFieldMsgType.mFid, MAMA_MSG_TYPE_INITIAL);
mamaDQPublisher_sendReply(symbolPub, msg, initialMsg);

Once the first message is sent, the client application listens for updates published from that publisher.
The recommended approach is for updates to be applied to the cache then the delta to be sent.

When a request for a symbol that is already being published and is familiar to the publisher manager is
made, the OnRequest callback is called. As well as the parameters in the OnNewRequest callback, you
are also given pointers to the publisher currently publishing this symbol and the closure structure for that
symbol.

Page 62

OpenMAMA Developer's Guide

Example 41: onRequestCb

onRequestCb (mamaDQPublisherManager pubManager,
 mamaPublishTopic* publishTopicInfo,
 short subType,
 short msgType, mamaMsg msg)

If the publishing application wishes to publish to that client, then it must first send an initial. However, as
the cache is being used to publish updates, it is important to make sure that you get a full image in a
thread-safe way. The difference between OnNewRequest and OnRequest is that OnRequest has a
publisher created and data, whereas OnNewRequest does not, so your data initialization should occur in
OnNewRequest. Once the initial is published, the client processes the updates as normal.

Recap requests are passed up in the same way as requests for symbols already being published,
through the OnRequest callback. This is because they are handled in the same way. The only difference
between the two is that you set the type on the image message published as RECAP rather than
INITIAL. You may also want to send the recap as multicast rather than as a reply.

Stop publishing (Refresh Mechanism)13.2.1

To be in accordance with the normal publishing rules within the platform, publishers should cease to
publish one hour after the last request or refresh. Refresh messages are sent by client applications
approximately every 55 minutes, and the onRefresh callback will be fired.

Example 42: onRefreshCb

onRefreshCb (mamaDQPublisherManager pubManager,
 mamaPublishTopic* publishTopicInfo,
 short subType,
 short msgType,
 mamaMsg msg)

There is an acknowledgement sent to all clients for that symbol that refreshing has occurred, which is
handled internally. The publishing application should record when the last refresh or request for a symbol
was received, and if it was more than one hour ago it may stop publishing that symbol and remove it
from the publisher manager.

If the symbol is requested again, an OnNewRequest callback is generated.

If a refresh is received for a symbol that is not currently being published, a OnNewRequest callback is
received rather than an OnRefresh. This is useful when bringing up a secondary source while not putting
extra strain on the client applications to respond to synchronization request messages.

Synchronization requests can be sent by the publisher manager during start-up to determine which
clients are currently subscribed to it. This is generally done when a source has been restarted. A
request is sent by the MamaDQPublisher Manager and all clients subscribed respond with a list of the
symbols they are interested in. The synchronization request message contains some values to help
separate the reply messages if there are a lot of subscriptions across multiple clients.

The reply is parsed by the publisher manager and will generate a number of OnNewRequest and
OnRequest callbacks.

It is important that synchronization requests are only sent when the publisher is in a position to handle
all the requests generated, and that they are sent after the transport is fully connected. For example, on
a TCP connection you would wait for the transport connected callback.

Page 63

OpenMAMA Developer's Guide

The OpenMAMA API provides a fault-tolerant module which can be used to heartbeat between two
applications and tell which is primary and which is secondary (see Section 12.2: Data quality and fault
tolerant takeovers). It is important that when attempting a fault-tolerant takeover that at a minimum you
recap everything that has ticked since the last heartbeat. This is due to the fact that OpenMAMA
clients will not request a recap when there is a change in seqnum that coincides with a change in
sender id. It is the responsibility of the publisher to maintain data quality through a takeover event.

Page 64

OpenMAMA Developer's Guide

Value Add14

Timers14.1

OpenMAMA supports user events triggered by recurring timers. These are represented by the
MamaTimer object. An event queue must be specified when a timer is created.

A timer is created with a specified interval in seconds, using a double-precision floating point number to
give the resolution in fractions of a second if required. The timer callback is invoked repeatedly at an
interval no shorter than that specified. A number of factors can cause the timer interval to be inexact or
the callback not to be immediately invoked on the firing of the timer.

The timer itself can be inaccurate due to the frequency of the OS interrupts. For instance, on a 100 Hz
OS (Linux 2.4), if a 10 milliseconds timer is created one millisecond after the last interrupt fired it will
take 19 milliseconds for the timer to fire. This is because only 9 milliseconds will have elapsed when the
next scheduled interrupt occurs. Essentially, the best timer resolution possible here is 10 milliseconds
and worst 19.9999 milliseconds.

The precision of timers is determined by the implementation in the underlying messaging platform and
the interrupt frequency of the operating system.

For example, the Linux 2.4 kernel with an interrupt frequency of 100 Hz is capable of 10 milliseconds
resolution at best. A Linux 2.6 (up to 2.6.12) kernel with a 1000 Hz interrupt frequency can provide
timers with a best resolution of 1 millisecond. (The default interrupt frequency on Linux 2.6.13 and up is
250 Hz but is now configurable on i386 architectures).

The invoking of a callback in response to a timer firing can depend on the activity on the event queue
which was specified on timer creation.

A timer can be destroyed from within a timer callback or any other callback on the queue. This function
must be called from the same thread dispatching on the associated event queue unless both the default
queue and dispatch queue are not actively dispatching.

Creating a Timer14.1.1

The following example show the creation of a recurring timer which fires every 500 milliseconds. In each
case the actionCallback function/object receives a callback once the interval has elapsed.

Example 43: Creating a timer

class TimerCallback implements MamaTimerCallback
{
 private Object myContextData = null;
 public TimerCallback (Object contextData)
 {
 myContextData = contextData;
 }
 public void onTimer (MamaTimer timer)
 {
 //perform recurring task
 }
}
....
MamaTimer timer = new MamaTimer ();

Page 65

OpenMAMA Developer's Guide

TimerCallback timerCallback = new TimerCallback ();
timer.create (queue,
 timerCallback,
 0.5);

With Java an overloaded create() method is also provided to allow a closure object to be passed in.

The closure is accessible with a getClosure() method.

IO14.2

The OpenMAMA API provides an abstract mechanism by which a client registers interest for various
events on file descriptors. A callback, provided to the API, is invoked whenever an event, of the type
specified when registering interest, occurs. The MamaIo API facilitates asynchronous IO operations.

The following event types are supported in the API:

MAMA_IO_READ
MAMA_IO_WRITE
MAMA_IO_CONNECT
MAMA_IO_ACCEPT
MAMA_IO_CLOSE
MAMA_IO_ERROR
MAMA_IO_EXCEPT

Registering for IO Events14.2.1

Not all underlying messaging middlewares support all of the event types provided by the OpenMAMA
API. In the case of a particular event type not being supported, the call to mamaIo_create() fails with

a return code of MAMA_STATUS_UNSUPPORTED_IO_TYPE.

User Events14.3

User events can be added to OpenMAMA queues irrespective of the middleware usingMamaQueue.

enqueueEvent(). This allows user code to be executed on any of the dispatching threads.

The MamaQueueEventCallback.onEventd() method will be invoked whenever the event fires. The

callback event is added to the back of the queue, so if there are a large number of events on the queue it
may be some time before the callback is invoked.

Logging14.4

To aid with debugging, the OpenMAMA API provides various levels of verbose logging to give developers
more detail during event processing within the API.By default, logging is disabled within the API and
needs to be manually enabled along with specifying the level at which to log information.

Logging Via Properties14.4.1

There are several values that can be set in mama.properties to control logging. They are listed in

Table 14: Logging Properties. Logs can be set to roll over. When set to roll over, the following
happens:

1. The log file is allowed to grow until it reaches the maximum size.
2. When it reaches the maximum size, the logfile has .1 appended to its name and a new log file is

Page 66

OpenMAMA Developer's Guide

begun.
3. If a .1 file already exists, this older file is renamed to have a .2 instead of .1, and so on.
4. If there is a maximum number of log files specified, then the total number of log files will never be

more than that. The oldest file will then be deleted when the log file rolls over

If using an UNBOUNDED policy, the behaviour is undefined if the log file reaches the maximum size
allowed by the file system.

Table 14: Logging Properties

Property Description

mama.logging.file.name The filename for the log file.

mama.logging.level Sets the log level. Possible values are:
off
severe
error
warn
normal
fine
finest

mama.logging.file.policySets the policy used when logging to a file. Possible values are:
UNBOUNDED (default) - the log file will grow indefinitely
ROLL - the log file will roll over when it reaches a certain specified
size
OVERWRITE - when a specified file size is reached, writing
continues at the start of the file
USER - when the maximum log file size is reached, the
onLogSizeExceeded callback is triggered (see setLogSizeCb
(callback) in the next table).

mama.logging.file.

maxsize

Sets the maximum size of the logfile, in bytes. This applies to the
ROLL, OVERWRITE and USER policies only. The default is 500MB.

mama.logging.file.

maxroll

Sets the maximum number of log files to keep.

mama.logging.file.appendWhen set to "true", an existing log file will be appended to when
logging is enabled. When set to "false", it will be overwritten.

There are several methods used to control logging. They are listed in the following table.

Page 67

OpenMAMA Developer's Guide

Table 15: Logging Methods

Method Description
logToFile(filename,
level)

Enables logging to filename at log level "level". See mama.

logging.level in the table above for values of level.

disableLogging() Disables logging, disables the log size exceeded callback, and sets
the log level to "OFF".

setLogLevel(level) Sets the log level to "level". See mama.logging.level in the table

above for values.
getLogLevel() Returns the current log level.
setLogFilePolicy(policy)Sets the log file policy. See mama.logging.file.policy in the

table above for values.
setLogSize(size) Sets the maximum log file size, in bytes. Applies when the policy is

ROLL, OVERWRITE or USER.
setNumLogFiles(numFiles,
level)

Sets the maximum number of log files. Applies when the policy is
ROLL only.

setAppendToLogFile(bool)When true, an existing log file will be appended to when logging is
enabled. When false, it will be overwritten.

loggingToFile(void) Returns true if logging to a file.
setLogSizeCb(callback) Sets the onLogSizeExceeded callback which is called when the max

file size is reached. Applies only to USER policy. Not available in Java

Conflation14.5

Conflation from the OpenMAMA Client Perspective14.5.1

Conflation is the process employed by an advanced publisher to merge messages on the write queue to
reduce memory use, to reduce bandwidth, and to deal with slow consumers. Conflation is available for
the NYSE Technologies Data Fabric.

The advanced publisher installs and un-installs a conflater for individual clients as and when they require
conflation. There are two circumstances that require conflation:

1. If the number of messages increases above a high water mark (the advanced publisher write queue
is becoming too large).

2. The client requests that conflation is turned on. A client may monitor its own queue sizes to
determine when it requires conflated data.

From a OpenMAMA client perspective, the most important aspect is the method by which a client
requests conflation. There is a OpenMAMA function available for this.

Example 44: Requesting conflation

transport.requestConflation();

Page 68

OpenMAMA Developer's Guide

There are two reasons why the conflater may no longer be needed:

1. When the number of messages drops below a low water mark.
2. When the client requests that conflation is no longer needed.

There is an OpenMAMA function available to request the end of conflation.

Example 45: Ending conflation

transport.requestEndConflation();

Although clients can request conflation or request that the advanced publisher stops conflating
messages at any time, the advanced publisher may not be able to honor the request. For example,
some advanced publishers may not be configured for conflation while others may be unable to end
conflation at a client's request because the write queues are too large.

When a client receives a conflated message it contains three additional fields: wConflateCount,
wConflateTradeCount, and wConflateQuoteCount. These represent the total number of messages
conflated into a single message, the number of trades and the number of quotes respectively.
wConflateCount == wConflateTradeCount + wConflateQuoteCount. OpenMAMA and OpenMAMDA use
these fields internally to perform sequence number checking and maintain data quality.

Statistics14.6

OpenMAMA provides statistics to monitor the OpenMAMA client. When enabled, OpenMAMA will
log, via OpenMAMA logging, and/or publish details of the numbers of subscription requests received,
number of initial messages received, queue size and various other statistics. 29West LBM also provides
various low-level statistics on a per context basis which are exposed via this functionality. Statistics are
generated and logged and/or published at a configurable interval. When OpenMAMA statistics are
logged, the value of the statistic for the interval is logged, along with the maximum and running total for
that statistic since statistics logging was enabled. When OpenMAMA statistics are published, the
interval value for each statistic is published along with a timestamp indicating the time the message was
generated and information identifying the client such as the IP Address, user name, and OpenMAMA
application name. When used in conjunction with the Stats Logger, customers can produce DSV files
containing client monitoring information.

Note that the size of the published message can be large. When publishing over 29West LBM, it is
likely that such a message will be too large to publish using immediate messaging. Depending on the
29West LBM version being used, this will result in either the message not being published at all, or the
message being published in a truncated form and thus missing some or all of the stats vector. For this
reason, we recommend disabling the use of immediate messaging for publishing over 29West LBM
using the property mama.lbm.transport.TRANSPORT_NAME.use_im_for_publishing= false.

Statistics are provided at various levels: globally (all transports and queues across the application), per-
transport, and per-queue. The level at which to generate statistics is configurable, and any combination
of global, transport and queue statistics can be used. 29West LBM statistics are enabled separately but
are considered transport-level statistics.

Note that when logged to the OpenMAMA log, only statistics with a value greater than "0" will appear in
the log.

Page 69

OpenMAMA Developer's Guide

Table 16: General OpenMAMA Statistics

Statistic Description

Initials Number of initial messages received.

Recaps Number of recaps received.

Messages Total number of messages received. This includes initial and recap messages.

FT Takeovers Number of fault tolerant takeovers. Note that this is only provided globally and per
transport, never per queue.

Queue Size Size of the queue at the time the stats message was generated (i.e., at the end of
the interval). Since this is a snapshot of the queue size rather than a cumulative
value like the other statistics, no total value is provided when logging via
OpenMAMA logging. This is only ever provided on a per queue basis, never
globally or per transport. Note that, when using LBM, the property mama.lbm.

eventqueuemonitor.queue_size_warning must be set for correct values

to be returned.

Subscriptions Number of subscriptions created. This includes all subscription types, including
the dictionary subscription.

Timeouts Number of subscription timeouts.

Statistics Logging Configuration14.6.1

The following parameters controls statistics logging. They can be set in mama.properties.

Table 17: Statistics Logging Configuration Parameters

Parameter Value Description Default

mama.statslogging.

enable

yes or no Enable/disable stats logging. Whether logging,
publishing, or both, this must be set to "yes" for
any stats logging functionality to be used.

mama.statslogging.

middleware

lbm, wmw or
tibrv

The middleware to use for publishing stats
messages. This only needs to be set if at least
one of the publishing parameters is enabled.

wmw

mama.statslogging.

interval

integer The interval, in seconds, between published
stats logging reports.

60

mama.statslogging.

transport

transport
name

The OpenMAMA transport used for publishing
the stats reports.

statslogg
er

mama.statslogging.

global.logging

yes or no Whether or not to log global stats to the
OpenMAMA log.

yes

mama.statslogging.

global.publishing

yes or no Whether or not to publish report messages for
global stats.

no

mama.statslogging.

transport.logging

yes or no Whether or not to log transport stats (not
including middleware-specific stats) to the
OpenMAMA log.

yes

mama.statslogging.

transport.publishing

yes or no Whether or not to publish report messages for
transport stats.

no

mama.statslogging.

queue.logging

yes or no Whether or not to log queue stats to the
OpenMAMA log.

yes

mama.statslogging.

queue.publishing

yes or no Whether or not to publish report messages for
queue stats.

no

Page 70

OpenMAMA Developer's Guide

Published Message Format14.6.2

Stats reports can be published by enabling one or more of the publishing parameters on the middleware,
specified by mama.statslogging.middleware, and transport, specified by mama.

statslogging.transport. These can be published to the Stats Logger product to automatically

generate DSV files containing the stats.

These stats reports are simply OpenMAMA messages published on the topic STATS_TOPIC, and so it
is possible to write a OpenMAMA application to subscribe to stats messages and manually process
them. The format of the published messages is described in the following table.

Table 18: Message Format

Field Name FID Type Description

InterfaceVersion 69 U8 Stats Logger interface version

MdSubscSourceUser 65 STRING The username of the user running the MAMA
client publishing the stats messages.

MdSubscSourceHost 63 STRING Hostname running the client which is
publishing the stats messages.

MdSubscSourceApp 64 STRING MAMA application name of the client
publishing the stats message. Defaults to
MamaApplication if not set.

MdSubscSourceAppClass 68 STRING Application class of the MAMA client
publishing the stats message. Defaults to
MamamApplications if not set.

MdSubscSourceIp 67 STRING IP Address of the MAMA client publishing
the stats message.

MamaUlIntervalStartTime 101 TIME The start time of the interval in which this set
of stats were monitored.

MamaUlIntervalEndTime 102 TIME The end time of the interval in which this set
of stats were monitored.

MamaStatEvents 103 VECTOR_MSG A vector message containing the actual
statistics. Its contents depend on which
stats publishing parameters are enabled. If
global stats publishing is enabled, it will
include a single message containing the
global statistics, as well as any other
messages. If transport stats are enabled, it
will include a message per transport, with
each message including statistics for a
single transport, as well as any other
messages. If queue stats are enabled, it will
include a message per queue, with each
message including statistics for a single
queue, as well as any other messages. The
format of these messages is included below.

The following table describes the messages included in MamaStatEvents. All the fields described in the
table are available from the MamaStatFields header. Names and FIDs for individual fields can my
accessed using FIELD.mName and FIELD.mFid.

Page 71

OpenMAMA Developer's Guide

Table 19: Sub Message Format

Field Name FID Type Description

Time 101 TIME Time the stats message was added to the array.

Name 102 STRING Name of the statistic.

Type 103 STRING Type of object the statistcs were measured for. Will be either
"Transport", "Queue", or "Global".

Middleware 104 STRING Middleware of the object the statistics were monitored for.
Except in the case of global stats, this will be the name of the
middleware. Global stats will always log "----" as multiple
middlewares may be being used across the application.

Initials 104 U32

See General OpenMAMA Statistics.Recaps 106 U32

Messages 107 U32

FT Takeovers 108 U32 See General OpenMAMA Statistics. Will never be present if
the Type field is "Queue".

Queue Size 109 U32 See General OpenMAMA Statistics. Will only ever be present
if the Type field is "Queue".

Subscriptions 110 U32
See General OpenMAMA Statistics.

Timeouts 111 U32

Page 72

OpenMAMA Developer's Guide

Example Programs15

This section gives a brief explanation of what each of the OpenMAMA example programs is designed to
show. Each example is provided as a prebuilt binary and as source code within the release. Each
example accepts a list of command line options. These can be examined by passing -h on the

command line, or viewing the source code file.

Note The examples should be available across all languages, however, some
may have a slight name change, such as mamalistenc, mamalistencpp,
mamalistencs, and mamalistenjava. The operation and functionality
across the languages should be consistent.

Table 20: Example Programs

Example Program Description

MamaListen This is a simple OpenMAMA application that creates a configurable number of
subscriptions to a single source on a single transport. Received messages for
these subscriptions are printed to screen with name, fid, type, and value. This
application shows the basic operation of a market data application.

MamaPublisher This is a simple publishing application that uses basic publishing to send
messages with a few fields on a well-known topic. Its purpose is to show the
use of basic publishing for non-market data.

MamaSubscriber This application uses basic subscriptions to listen for a basic publisher. It
works in conjunction with MamaPublisher. This application shows the other
side of non-market data communication.

MamaInbox This application sends an inbox request to a source and waits for a reply. When
used in conjunction with MamaPublisher, the MamaPublisher will listen for the
request and respond with a simple message. This illustrates the request/reply
mechanism as used with both market data and non-market data situations.

MamaIO This application shows how to use OpenMAMA to monitor a file descriptor for
input.

MamaMultiSubscriber This application demonstrates how to use multiple bridges within a single
application to receive data from two middlewares. The received messages are
processed and displayed in the same manner.

MamaProxy This application is similar to MamaListenCached, with the added functionality
that the messages are republished using the market data publishing component
(DQPublisher). This allows a further MamaListen client to receive the data via
this path, rather than directly from the source.

MamaSymbolListSubsc
riber

This application uses a symbol list subscription to get a complete list of all
symbols available from the source, and then makes market data subscriptions
to these symbols, illustrating how to listen to the "world" in topic terms.

MamaFtMember This application demonstrates use of OpenMAMA fault tolerance capability.
Each instance of MamaFtMember can be assigned to a group. Each instance
within the group has a fault tolerance weight. Whenever all members in a group
are active, the highest weighted member will report its status as ACTIVE, the
others will be STANDBY. If the highest weighted member is killed the next
highest weighted member will become ACTIVE.

Page 73

OpenMAMA Developer's Guide

Performance Programming16

OpenMAMA and OpenMAMDA are commonly used within applications where performance is
important. OpenMAMA itself is very lightweight and an application that does significant work will use
much more CPU cycles that the API itself. This section describes a number of techniques and tips that
can be used to optimize the use of OpenMAMA, OpenMAMDA and applications built on top of them.

Monitoring Performance16.1

There are a number of ways to monitor the performance of a OpenMAMA or OpenMAMDA application:

A good indicator of performance is the queue depth: if the queue is growing then it is a sign that the
application is not able to keep up with the amount of incoming data. This adds latency. From within
the API, either the depth of queues can be queried or watermarks can be set for a particular queue
depth value.
MamaStats provides a lot of useful information including the queue depth, message rates, number of
recaps as well as middleware-specific statistics.
Recap requests, shown via the MamaStats output or thought the onRecapRequest() callback, are
also an indicator that the application is not able to keep up with the data. Recaps are not a good
indicator of performance because, by the time a recap is requested, permanent data loss has
already occurred.
The application's CPU use should be monitored. If any of the cores used by the application approach
or reach 100% use then issues such as queue growth and data loss will occur.

Storing Per-Symbol State16.2

It is usual to need to store application state on a per symbol basis e.g. calculated values, pointer/
references to other application objects etc.

Note It is very inefficient to do this by obtaining the symbol from each
received message and then using a map to retrieve the state for that
symbol.

OpenMAMA and OpenMAMDA provide an alternative mechanism for storing state though closures. A
closure is a reference to the base object and is associated with a particular symbol.

Closures can be set on a subscription, created and then retrieved using the accessors on the
subscription objects.

Another method available is to store the per-symbol state within the objects which implement the
subscription callback interfaces e.g. the abstract base class MamaSubscriptionCallback in C++.

To do this, a separate instance of the callback object should be created for each subscription and its
state should be stored in its member variables.

Page 74

OpenMAMA Developer's Guide

Message Access16.3

If accessing all, or most, of the data within a message, then iteration is generally faster than direct field
access. There are two methods: user driven and callback driven. User driven has been shown to be
faster.

If accessing only a few fields within a message, then direct access to those particular fields will
generally be faster. The decision of which method to choose will depend on two factors: the particular
application use case and the deployment, which will determine the number of fields and where those
fields are within a message, so experimentation is encouraged. The exception to this is with the Java
version of OpenMAMA where, because of the underlying Java Native Interface layer, direct access is
always quicker.

Memory Allocation16.4

Memory allocation and deallocation are major sources of performance issues. It is best to allocate all
required memory at start up, and avoid allocating memory while processing data, particularly in on a per-
message basis. There are various ways to do this, which include: reusing the same specific objects from
one callback to another; or, if the required lifetime of data stored within an object is longer than the
scope of a callback, then a pool of reusable objects can be used.

Threading16.5

The recommended way to scale a OpenMAMA or OpenMAMDA application across using multiple
CPU cores is to use separate threads on mamaQueues, with one thread/queue per CPU core allocated
to OpenMAMA. For example, on an eight core machine with a non-MAMA application having two “hot”
threads, the OpenMAMA application having two “hot” threads but not directly using OpenMAMA, then
three mamaQueues should be used. The definition of a “hot” thread is one that continuously uses a
significant amount of CPU. The eighth core in the example above is left unassigned because it is
recommended to reserve a core for the operating system and other threads that don’t use a significant
amount of CPU.

Again, different applications will have behave differently so some experimentation may be required to find
the optimal number of queues. The example applications supplied with OpenMAMA demonstrate an
easy way to do this how by having the number of queues configurable number of queues at runtime
using the MamaQueueGroup object.

An alternative method is to use a separate thread to do the message processing instead of processing
the data in the callbacks. This is not generally recommended as it just shifts the bottleneck from one
thread to another, and causes additional overhead by having to copy the message or fields from the
message and place onto another queue.

Page 75

OpenMAMA Developer's Guide

Operating in a Managed Environment16.6

Java provides a memory-managed environment. All the OpenMAMA managed objects are implemented
on top of a native equivalent, which is destroyed once the managed object is finalized.

Increased performance can be achieved by explicitly releasing resources when they are no longer
required. For example, explicitly destroying the object.

All OpenMAMA objects, except the subscription, provide the destroy function that releases native

resources when called. The subscription provides the deallocate method to release native resources,

see Section 7.4: Reusing Subscriptions for further details.

Table 21: Managed Object Destroy Functions

Object Java Method
MamaTransport destroy

MamaQueue destroy

MamaMsg destroy

MamaBasicSubscription deallocate

MamaSubscription deallocate

Page 76

OpenMAMA Developer's Guide

Running Multiple Instances of OpenMAMA17

Only one instance of OpenMAMA is supported for each process. However, multiple OpenMAMA
processes can be run successfully.

By default, when the mama_open function is called, the mama.properties file is obtained from the

location specified by the WOMBAT_PATH environment variable. This results in all OpenMAMA processes

being configured using the same file. See Section 4: Properties for further details.

Running with a Single Properties File17.1

This is the default approach taken when running multiple instances of the OpenMAMA example
programs, such as mamalistenc.

OpenMAMA still runs, but with the following restrictions:

1. Only a single log file can be specified.

The mama.logging.file.name entry in mama.properties can be used to specify the log file.

All OpenMAMA processes attempt to open and write to the log file at the same time. To prevent this
occuring:

Do not specify a log file. If a log file is not specified OpenMAMA writes log entries to stderr, the
output can be directed on a per-process basis.
Change the location of the log file in code using the mama_logToFile function.
Install a log callback function in code to catch all logging events using the mama_setLogCallback
function.

2. Publishing features may not work properly.

OpenMAMA provides several features that create transports as part of their initialization. Transport
names and settings are read from mama.properties when mama_open is called.

This is particularly a problem publishing data when using a point to point middleware such as WMW
TCP. It results in an error being returned from mama_open as the publishing port is blocked by a prior
 OpenMAMA instance.

The following features publish data on the transport. If any of these are to be used at the same time
across multiple OpenMAMA instances, then consideration should be given to maintaining multiple
mama.properties files or configuration of the API in code.

Stats publishing
Usage logging
WAM

The following features create subscriptions to request data. In these cases a multi-cast middleware
could be used that allows multiple connections to be open at the same time.

Property server connection
Template server connection

Page 77

OpenMAMA Developer's Guide

Managing Multiple Properties Files17.2

Due to the restrictions highlighted in Section 17.1: Running with a Single Properties File, it may be
desirable to configure each process independently by supporting multiple properties files. OpenMAMA
provides two methods of doing this:

As explained in the previous section, the default behaviour of mama_open can be overridden using

the mama_openWithProperties() function. This function takes a file name and location of the

properties file.
Alternatively, each process can define a different location in the WOMBAT_PATH environment

variable.

Page 78

OpenMAMA Developer's Guide

Configuration Reference18

OpenMAMA properties that apply to all middlewares are listed in the following table.

Table 22: OpenMAMA Properties for All Middlewares

Property Description Default

entitlement.servers A comma-separated list of site server connection
specifications. The format is ip-address:port or host:
port. For example, entitlement.servers = host1:8095,
host2:8095

mama.%s.transport.%s.

groupsizehint

This gives a hint as to the expected number of
symbols within a group when using group
subscriptions. Increasing this may improve
performance when using larger groups

100

mama.catchcallbackexceptions.

enable

Enable try catch on C++ callbacks to avoid
exceptions being propagated back to C code. This is
off by default as may have performance implications.

off

mama.entitlement.altuserid Holds a user ID that OEA will pass to Site Server, in
addition to the OS user ID. When processing
requests from OEA, Site Server will use the
alternative user ID if it is configured to use the
alternative user ID. Otherwise, Site Server will use
the OS user ID, even if the alternative user ID is
provided by OEA. Example: mama.entitlement.
altuserid=user1.

mama.entitlement.

effective_ip_address

Holds an IP address to be used for counting
concurrent connections. It is also recorded as the IP
address in usage logging records. Typically used
when the OEA client does not reside in the
subscribing application but in a OEA server process.
Example: mama.entitlement.effectiveipaddress =
192.168.2.20.

mama.entitlement.porthigh Holds the maximum TCP/IP port on which OEA can
listen for requests from Site Server. Example: mama.
entitlement.porthigh = 10010.

8001

mama.entitlement.portlow Holds the minimum TCP/IP port on which OEA can
listen for requests from Site Server. Example: mama.
entitlement.portlow = 10000.

8000

mama.entitlement.site Holds the name of the site whose entitlements set is
queried by Site Server when processing a request
from OEA. If this is not specified Site Server uses its
default site when processing requests from OEA.
Example: mama.entitlement.site = BELFAST.

mama.logging.file.append See Section 14.6.2: Logging Via Properties

mama.logging.file.maxroll

mama.logging.file.maxsize

mama.logging.file.name

mama.logging.file.policy

mama.logging.level

mama.logging.milliseconds

mama.maybestale.recap.timeout Turns on an inactivity check after Tibco Rendezvous
advisories. Time to wait is specified in seconds.

Page 79

OpenMAMA Developer's Guide

Property Description Default

mama.multicast.transport.ft.

interface

Specify the interface to use for multicast fault-
tolerant setup.

mama.multicast.transport.ft.

iowindow

Specify the IO window size for the fault-tolerant
communication.

mama.multicast.transport.ft.

network

Specify the multicast group.

mama.multicast.transport.ft.

service

Specify the multicast port.

mama.multicast.transport.ft.

ttl

Specify the time to live for the multicast messages.

mama.statslogging.enable See Section 14.8.1: Statistics Logging Configuration.

mama.statslogging.global.

logging

mama.statslogging.global.

publishing

mama.statslogging.interval

mama.statslogging.lbm.logging

mama.statslogging.lbm.

publishing

mama.statslogging.middleware

mama.statslogging.middleware

mama.statslogging.middleware

mama.statslogging.queue.

logging

mama.statslogging.queue.

publishing

mama.statslogging.transport

mama.statslogging.transport.

logging

mama.statslogging.transport.

publishing

mama.subscription.

preinitialcachesize

Controls the size of the preinitial cache. Takes an
integer value.

10

mama.throttle.interval Sets the interval of the throttle timer for subscription
and recap requests

mama.transport.%s.

preinitialstrategy

Controls when the updates stored in preinitialcache
are passed up. "initial" passes any cached updates
immediately after initial "gap" passes the update,
only if a gap was detected.

ongap

mama.wirecache.templates Specifies the directory and file name where the
templates are defined, for example, c:

\properties\wirecache_templates.xml.

Page 80

OpenMAMA Developer's Guide

Avis Properties18.1

Setting Avis properties

The following properties can be set for the Avis middleware via OpenMAMA properties:

URL:

Specify the URL to connect to the Avis server.

mama.avis.transport.<tport_name>.url=elvin://localhost

If not specified, the default is “elvin://localhost”.

Transport

The initial release supports a single transport connected to a single Avis server. An attempt to create a
second or subsequent transport will return an error (MAMA_STATUS_PLATFORM).

Payload Limitations

The Avis payload has a restricted set of types compared to OpenMAMA. The following table shows how
these are mapped in the Avis payload bridge.

Table 23: Type Mapping

OpenMAMA Avis Truncation

Char String No

Bool I32 No

I8 I32 No

U8 I32 No

I16 I32 No

U16 I32 No

I32 I32 No

U32 I64 No

I64 I64 No

U64 I64 Yes

F32 F64 No

F64 F64 No

String String No

Price F64 Precision information lost

Datetime U64 No

Page 81

OpenMAMA Developer's Guide

Vector types are not supported in the Avis payload, and trying to add these will result in an error
(MAMA_STATUS_NOT_IMPLEMENTED).

Opaque types are supported in the Avis payload, but due to a bug in the underlying Avis client library,
they cannot be copied. Since OpenMAMA requires that messages can be copied you should not use
the Opaque type.

Fault Tolerance

Native fault tolerance is not supported using the Avis Bridge.

Entitlements

Entitlements are not currently supported using subscriptions on the Avis middleware.

Page 82

OpenMAMA Developer's Guide

OpenMAMA Status Codes18.2

This section lists the status and error codes. These are defined in mama/status.h.

Table 24: OpenMAMA Status Codes

Numeric
Value

Enum Name Description

0 MAMA_STATUS_OK Everything okay
1 MAMA_STATUS_NOMEM No memory
2 MAMA_STATUS_PLATFORM Messaging platform specific error
3 MAMA_STATUS_SYSTEM_ERROR General system error
4 MAMA_STATUS_INVALID_ARG Invalid argument
5 MAMA_STATUS_NULL_ARG Null argument
6 MAMA_STATUS_NOT_FOUND Not found
7 MAMA_STATUS_TIMER_FAILURE Timer failure
8 MAMA_STATUS_IP_NOT_FOUND IP address not found
9 MAMA_STATUS_TIMEOUT Timeout (e.g. when subscribing to a symbol)
10 MAMA_STATUS_NOT_ENTITLED Not entitled to the symbol being subscribed

to
11 MAMA_STATUS_PROPERTY_TOO_LONG Property too long
12 MAMA_STATUS_MD_NOT_OPENED MD not opened
13 MAMA_STATUS_PUB_SUB_NOT_OPENED Publish/subscribe not opened
14 MAMA_STATUS_ENTITLEMENTS_NOT_ENAB

LED
Entitlements not enabled

15 MAMA_STATUS_BAD_TRANSPORT_TYPE Bad transport type
16 MAMA_STATUS_UNSUPPORTED_IO_TYPE Using unsupported I/O type
17 MAMA_STATUS_TOO_MANY_DISPATCHERS Too many dispatchers
18 MAMA_STATUS_NOT_IMPLEMENTED Not implemented
19 MAMA_STATUS_WRONG_FIELD_TYPE Wrong field type
20 MAMA_STATUS_BAD_SYMBOL Bad symbol
21 MAMA_STATUS_IO_ERROR I/O error
22 MAMA_STATUS_NOT_INSTALLED Not installed
23 MAMA_STATUS_CONFLATE_ERROR Conflation error
24 MAMA_STATUS_QUEUE_FULL Event dispatch queue full
25 MAMA_STATUS_QUEUE_END End of event queue reached
26 MAMA_STATUS_NO_BRIDGE_IMPL No bridge
27 MAMA_STATUS_INVALID_QUEUE Invalid queue
9001 MAMA_ENTITLE_STATUS_NOMEM No memory
9002 MAMA_ENTITLE_STATUS_BAD_PARAM Invalid parameter
9003 MAMA_ENTITLE_STATUS_BAD_DATA The XML returned from entitlement server

was invalid
9004 MAMA_ENTITLE_STATUS_URL_ERROR Invalid URL
9005 MAMA_ENTITLE_STATUS_OS_LOGIN_?

ID_UNAVAILABLE
Unable to determine OS ID of account
process is running under

9006 MAMA_ENTITLE_STATUS_ALREADY_ENTITL
ED

An attempt is made to get entitlements after
an already successful attempt

9007 MAMA_ENTITLE_STATUS_CAC_LIMIT_EXCEE
DED

A user has exceeded concurrent access
limit

9008 MAMA_ENTITLE_STATUS_OEP_LISTENER_?
CREATION_FAILURE

Failed to create OEP listener that processes
inbound messages from site server.
Required for concurrent access control and/
or dynamic entitlements update

9009 MAMA_ENTITLE_STATUS_HTTP_BASE N/A

Page 83

OpenMAMA Developer's Guide

Numeric
Value

Enum Name Description

9010 MAMA_ENTITLE_HTTP_ERRHOST No such host
9011 MAMA_ENTITLE_HTTP_ERRHOST Cannot create socket
9012 MAMA_ENTITLE_HTTP_ERRCONN Cannot connect to host
9013 MAMA_ENTITLE_HTTP_ERRWRHD Write error on socket while writing to header
9014 MAMA_ENTITLE_HTTP_ERRWRDT Write error on socket while writing data
9015 MAMA_ENTITLE_HTTP_ERRRDHD Read error on socket while reading result
9016 MAMA_ENTITLE_HTTP_ERRPAHD Invalid answer from data server
9017 MAMA_ENTITLE_HTTP_ERRNULL Null data pointer
9018 MAMA_ENTITLE_HTTP_ERRNOLG No/bad length in header
9019 MAMA_ENTITLE_HTTP_ERRMEM Can't allocate memory
9020 MAMA_ENTITLE_HTTP_ERRRDDT Read error while reading data
9021 MAMA_ENTITLE_HTTP_ERRURLH Invalid URL (must start with 'http:://')
9022 MAMA_ENTITLE_HTTP_ERRURLP Invalid port in URL
9023 MAMA_ENTITLE_HTTP_BAD_QUERY Invalid query - HTTP result 400
9024 MAMA_ENTITLE_HTTP_FORBIDDEN Forbidden
9025 MAMA_ENTITLE_HTTP_TIMEOUT Request timeout - HTTP result 403
9026 MAMA_ENTITLE_HTTP_SERVER_ERR Server error - HTTP result 500
9027 MAMA_ENTITLE_HTTP_NO_IMPL Not implemented - HTTP result 501
9028 MAMA_ENTITLE_HTTP_OVERLOAD Overloaded - HTTP result 503
9029 MAMA_ENTITLE_NO_USER No User
9030 MAMA_ENTITLE_NO_SERVERS_SPECIFIED No servers specified

Page 84

OpenMAMA Developer's Guide

Glossary19

Term Definition

Data Dictionary OpenMAMA object containing meta data for fields published on the NYSE
Technologies Market Data Platform. (See Dictionary for details.)

Entitlements Authorization/Authentication for market data subscriptions on the NYSE Technologies
Market Data Platform.

FID Field Identifier. Integer identifier used to uniquely identify a field within a MamaMsg.
Field Descriptor OpenMAMA object, obtained from the data dictionary, which contains meta

information for a specific field. (See Dictionary for details.)
Initial Image Point in time snapshot for all published data for a subscribed symbol on the NYSE

Technologies Market Data Infrastructure. Typically the first data received for a new
subscription. (See Subscriptions for Details)

IO Input/Output. OpenMAMA object used to register interest in OS level file descriptor
events (Only in C/C++/C#). (See IO for Details)

LBM Latency Busters Messaging. Messaging middleware provided by 29West. (http://
www.29west.com)

LBTRM Latency Buster Transport - Reliable Multicast. This is the reliable multicast protocol
implementation in use within the LBM middleware.

MAMA Middleware Agnostic Messaging API
MAMDA Middleware Agnostic Market Data API
OPRA Options Pricing Regulation Authority http://www.opradata.com/
Queue OpenMAMA object used to control the dispatching of events within the API.
Recap OpenMAMA, intraday, snapshot update of data for a particular symbol. (See

Subscriptions for Details)
Subscription OpenMAMA object used to register interest in data for a particular symbol. (See

Subscriptions for Details)
Symbol OpenMAMA terminology for the messaging concept of a Topic of information. (See

Subscriptions for Details)
Tibrv TIBCO Rendezvous. Messaging middleware provided by TIBCO. (http://www.tibco.com)

Timer OpenMAMA object used to trigger recurring event callbacks at a specified interval.

(See Timers for details)
Topic Messaging middleware name for an item of interest when subscribing to data. (See

Subscriptions for Details)
Transport OpenMAMA object used to specify and configure communication protocols for

subscriptions and publishing data via the API. (See Transports for details)
UTP Nasdaq, Unlisted Trading Privileges, data feed. (http://www.nasdaqtrader.com/trader/

mds/utpfeeds/utpfeeds.stm)
WombatMsg NYSE Technologies, binary, wire data format. Used to propagate data on the NYSE

Technologies Market Data Platform.

	Introduction and Architecture
	Operating Systems
	Middlewares
	API Language Implementations
	Using the API
	Object Summary

	Installation
	Linux
	Installation
	Running Example Programs

	Windows
	Installation Steps
	Compiler Discrepancies: Building with Visual Studio 2010
	Static Example Programs

	Bridges
	Middleware Bridges
	Using Linked Bridge Libraries
	Loading Bridge Libraries at Runtime
	Loading Bridge Libraries at Runtime from a Specified Location

	Payload Bridges
	Loading Payload Bridges at Runtime
	Default Payloads
	Using Payload

	Properties
	Setting Properties at Runtime

	Transports
	Creating a Transport
	Setting Transport Properties
	Transport Runtime Attributes
	Load Balancing Transports
	Properties for Load Balancing

	Events and Queues
	Accessing the Internal Event Queue
	Creating Queues
	Destroying Queues
	How to Destroy a Queue
	Destroying the Default Queue
	Object Destroy Notifications
	Debugging Queue Destroy

	Dispatching
	Queue Monitoring
	Event queue size

	Queue groups
	Developer Tips

	Subscriptions
	Life Cycle of the MAMA Subscription
	Common Regular Subscription Behaviour
	SymbolNamespace & Symbol
	Callbacks
	Initial Images
	Recaps
	Timeout/Retries
	Refreshes
	Throttling of Subscription Creation
	Caching of Updates Prior to Initial

	Creating and Destroying Subscriptions
	Subscription Types
	Basic Subscriptions

	Entitlements
	Threading
	OpenMAMA Dictionary
	Creating the Data Dictionary (from platform)
	Using the Data Dictionary
	Developer Tips

	Messages
	Accessing Data
	Message Creation
	Field Iteration
	Special Data Types
	MamaDateTime
	MamaPrice

	Developer Tips
	Java-Specific Developer Tips
	MamaMsg Wire Format Conversion Matrix

	Data Quality
	Data Quality for Group Subscriptions
	Data Quality and Fault Tolerant Takeovers

	Publishing
	Basic Publishing
	Request/Response

	Advanced Publishing
	Stop publishing (Refresh Mechanism)

	Value Add
	Timers
	Creating a Timer

	IO
	Registering for IO Events

	User Events
	Logging
	Logging Via Properties

	Conflation
	Conflation from the OpenMAMA Client Perspective

	Statistics
	Statistics Logging Configuration
	Published Message Format

	Example Programs
	Performance Programming
	Monitoring Performance
	Storing Per-Symbol State
	Message Access
	Memory Allocation
	Threading
	Operating in a Managed Environment

	Running Multiple Instances of OpenMAMA
	Running with a Single Properties File
	Managing Multiple Properties Files

	Configuration Reference
	Avis Properties
	OpenMAMA Status Codes

	Glossary

